

Neurocirugía

https://www.revistaneurocirugia.com

O-039 - ANEURYSMAL SUBARACHNOID HAEMORRHAGE: VOLUMETRIC QUANTIFICATION OF THE BLOOD DISTRIBUTION PATTERN TO ACCURATELY PREDICT THE RUPTURED ANEURYSM LOCATION

A. Mosteiro¹, D. Culebras¹, D. Vargas¹, J.L. Moreno¹, A. López-Rueda¹, L. Llull¹, D. Santana¹, L. Pedrosa², S. Amaro¹, R. Torné¹ and J. Enseñat¹

¹Hospital Clínic de Barcelona, Barcelona, Spain; ²Instituto de Investigaciones Biomédicas August Pi i Sunyer, Barcelona, Spain.

Resumen

Introduction: In spontaneous subarachnoid haemorrhage (SAH) accurate determination of the bleeding source is paramount to guide treatment. Traditionally, the bleeding pattern has been used to predict the aneurysm location.

Objectives: Here, we have tested a software-based tool, which quantifies the volume of intracranial blood and stratifies it according to the regional distribution, to predict the location of the ruptured aneurysm.

Methods: A consecutive series of SAH patients admitted to a single tertiary centre between 2012 and 2018, within 72h of onset, harbouring a single intracranial aneurysm. A semi-automatized method of blood quantification, based on the relative density increase, was applied to initial non-contrast CTs. Five regions were used to define the bleeding patterns and to correlate them with aneurysm location: perimesencephalic, interhemispheric, right/left hemisphere and intraventricular.

Results: 68 patients were included for analysis. There was a strong association between the distribution of blood and the aneurysm location (p < 0.001). In particular: ACom and interhemispheric fissure (p < 0.001), MCA and ipsilateral hemisphere (p < 0.001), ICA and ipsilateral hemisphere and perimesencephalic cisterns (p < 0.001), PCom and hemispheric, perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019), and PICA and perimesencephalic and intraventricular (p = 0.019).

Conclusions: Regional automatised volumetry seems a reliable and objective tool to quantify and describe the distribution of blood within the subarachnoid spaces. This tool accurately predicts the location of the ruptured aneurysm; its use may be prospectively considered in the emergency setting when speed and simplicity are attained.

1130-1473/© 2023 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.