En este capítulo recogemos algunos hallazgos recientes que suponen un importante paso adelante en el conocimiento, a nivel molecular, de la rica dinámica de la sinapsis. Para comunicarse entre sí, y con sus sistemas efectores, las neuronas se valen de un lenguaje que consta de señales eléctricas (potenciales de acción) y químicas (neurotransmisores, neuromoduladores). Se conoce en la actualidad una rica gama de moléculas cuya función neurotransmisora en cerebro y sistema nervioso periférico está fuera de toda duda. Las monoaminas acetilcolina, dopamina, noradrenalina, adrenalina, histamina, serotonina, glutamato, aspartato, glicina, ATP y GABA constituyen buenos ejemplos. Los neuropéptidos opiáceos, el péptido intestinal vasoactivo (VIP), las neuroquininas (sustancia P), la somatostatina, neurotensina, neuropéptido Y, colecistoquinina, vasopresina, oxitocina, se han relacionado con el control de la respuesta al estrés, la conducta sexual, la ingesta, el dolor, el aprendizaje y la memoria. No se sabe con certidumbre si se comportan como neurotransmisores o neuromoduladores, cosa que también le ocurre al óxido nítrico (NO).
Se conoce gran parte de la estructura molecular de la maquinaria secretora, responsable de la rápida liberación sinaptica de neurotransmisores en respuesta a potenciales de acción. Las proteínas sinaptobrevina (ubicada en la membrana de la vesícula sinaptica), sintaxina y SNAP-25 (estas dos, ubicadas en la membrana plasmática presináptica) forman un complejo trimérico que es responsable del atraque de las vesículas en los sitios activos de exocitosis. En esta posición estratégica, las vesículas liberan su neurotransmisor en pocos milisegundos, cuando el potencial de acción invade la terminación nerviosa y activa la apertura de distintos subtipos de canales de Ca2+voltaje-dependientes (L, N, P, Q, R y T). La distribución geográfica asimétrica de cada canal, en distintos tipos de neuronas, ha dado piea la hipótesis de que el Ca2+ que entra por cada canal está compartimentalizado, lo que favorece la creación de microdominios de Ca2+ en el citosol y en el núcleo, que sirven distintas funciones celulares.
Esta rica heterogeneidad bioquímica sinaptica da pie a la selección de múltiples dianas biológicas para el diseño y desarrollo de fármacos con potencialidad terapéutica en enfermedades neuropsiquiátricas tipo Alzheimer, Parkinson, epilepsias, ictus, demencia vascular, depresión, esquizofrenia, ansiedad y otras.
In this article we show some recent findings that constitute a great progress in the molecular knowledge of synaptic dynamics. To communicate, neurons use a code that includes electrical (action potentials) and chemical signals (neurotransmitters, neuromodulators). At the moment a great variety of molecules are known, whose neurotansmitter function in brain and the peripheral nervous system are out of question. Monoamines like acetylcholine, dopamine, noradrenaline, adrenaline, histamine, serotonin, glutamate, aspartate, glicine, ATP and GABA are good examples. Opioid neuropeptides, vasoactive intestinal peptide (VIP), neurokinines (substance P), somatostatin, neurotensin, neuropeptide Y, cholecystokinine, vasopressin or oxitocin have been related to the control of the stress response, sexual behaviour, food intake, pain, learning and memory, qualities that are also related to nitric oxide (NO).
A great part of the molecular structure of the secretory machinery is known to be responsible for fast neurotransmitter release at the synapse, in response to action potentials. Proteins like sinaptobrevin (located in the membrane of the synaptic vesicle), sintaxin and SNAP-25 (both located at the presynaptic plasma membrane) constitute a trimeric complex wich is responsable of the vesicular docking at the active sites for exocytosis. From this strategic location, vesicles release their neurotransmitter within few milliseconds, when the action potential invades the nerve terminal and activates the opening of the different subtypes of voltage-dependent Ca2+ channels. The asymetric geographical distribution of each type of channel, in different neurons, rose the hypothesis that Ca2+ that enters through each subtype of channel is compartimentalised, thus favouring the generation of Ca2+ microdomains, in the cytosol and the nucleus, involved in different cellular functions.
This great biochemical synaptic heterogeneity is facilitating the selection of many biological targets to develop drugs with potencial therapeutic applications in neuropsychiatric diseases i.e. Alzheimer's, Parkinson, epilepsies, stroke, vascular dementia, depression, schizophrenia, anxiety and so on.
Article
If it is the first time you have accessed you can obtain your credentials by contacting Elsevier Spain in suscripciones@elsevier.com or by calling our Customer Service at902 88 87 40 if you are calling from Spain or at +34 932 418 800 (from 9 to 18h., GMT + 1) if you are calling outside of Spain.
If you already have your login data, please click here . p>
If you have forgotten your password you can you can recover it by clicking here and selecting the option ¿I have forgotten my password¿.