array:24 [ "pii" => "S1130147324000666" "issn" => "11301473" "doi" => "10.1016/j.neucir.2024.05.004" "estado" => "S300" "fechaPublicacion" => "2024-09-01" "aid" => "613" "copyright" => "Sociedad Española de Neurocirugía" "copyrightAnyo" => "2024" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurocirugia. 2024;35:253-62" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "en" => array:19 [ "pii" => "S2529849624000297" "issn" => "25298496" "doi" => "10.1016/j.neucie.2024.06.001" "estado" => "S300" "fechaPublicacion" => "2024-09-01" "aid" => "613" "copyright" => "Sociedad Española de Neurocirugía" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurocirugia. 2024;35:253-62" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Clinical Research</span>" "titulo" => "Intradural anatomy and mobilization techniques of oculomotor, trochlear and abducens nerve after microsurgical dissection: a cadaveric study" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "253" "paginaFinal" => "262" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Anatomía intradural y técnicas de movilización de los nervios oculomotor, troclear y abductor tras disección microquirúrgica: un estudio cadavérico" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1453 "Ancho" => 2925 "Tamanyo" => 349600 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Dissection views of the trochlear and oculomotor nerves before Pre-intradural dissection (a) The course of the right trochlear nerve between the lateral and medial tentorial dural leaf and dural porus. (b) Posterior view of the right trochlear nerve at dural porus entrance. OcN: Oculomotor Nerve, TN: Trochlear Nerve, TrN: Trigeminal Nerve, AN: Abducens Nerve, MTD: Tentorial Dura Medial Leaf, LTD: Tentorial Dura Lateral leaf, C: Clivus, DS: Dorsum Sella, APL: Anterior Petroclinoid Ligament, PPL: Posterior Petroclinoid Ligament, black arrow: Dural porus of the trochlear nerve.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Oguz Altunyuva, Reyhan Kasab, Recep Fedakar, Selcuk Yilmazlar" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Oguz" "apellidos" => "Altunyuva" ] 1 => array:2 [ "nombre" => "Reyhan" "apellidos" => "Kasab" ] 2 => array:2 [ "nombre" => "Recep" "apellidos" => "Fedakar" ] 3 => array:2 [ "nombre" => "Selcuk" "apellidos" => "Yilmazlar" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S1130147324000666" "doi" => "10.1016/j.neucir.2024.05.004" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1130147324000666?idApp=UINPBA00004B" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529849624000297?idApp=UINPBA00004B" "url" => "/25298496/0000003500000005/v2_202409060916/S2529849624000297/v2_202409060916/en/main.assets" ] ] "itemSiguiente" => array:17 [ "pii" => "S1130147324000174" "issn" => "11301473" "doi" => "10.1016/j.neucir.2024.03.001" "estado" => "S300" "fechaPublicacion" => "2024-09-01" "aid" => "604" "documento" => "article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Neurocirugia. 2024;35:263-6" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Case Report</span>" "titulo" => "Terson’s syndrome after endoscopic removal of a colloid cyst" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "263" "paginaFinal" => "266" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Sindrome de Terson tras resección endoscópica de quiste coloide" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 994 "Ancho" => 900 "Tamanyo" => 73818 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Postoperative CT scan that shows complete removal without any complication and with ventricular drain placed in left ventricle.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Angel Horcajadas Almansa, Ana M. Román Cutillas, Ana M. Jorques Infante, José M. Ortega Molina" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Angel" "apellidos" => "Horcajadas Almansa" ] 1 => array:2 [ "nombre" => "Ana M." "apellidos" => "Román Cutillas" ] 2 => array:2 [ "nombre" => "Ana M." "apellidos" => "Jorques Infante" ] 3 => array:2 [ "nombre" => "José M." "apellidos" => "Ortega Molina" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1130147324000174?idApp=UINPBA00004B" "url" => "/11301473/0000003500000005/v1_202409030459/S1130147324000174/v1_202409030459/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S1130147324000654" "issn" => "11301473" "doi" => "10.1016/j.neucir.2024.06.001" "estado" => "S300" "fechaPublicacion" => "2024-09-01" "aid" => "612" "copyright" => "Sociedad Española de Neurocirugía" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurocirugia. 2024;35:247-52" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Investigación clínica</span>" "titulo" => "La rizotomía parcial sensitiva en la neuralgia del trigémino recurrente. Nuestra experiencia y revisión de la literatura" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "247" "paginaFinal" => "252" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Partial sensory rhizotomy in recurrent trigeminal neuralgia. Our experience and literature review" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2283 "Ancho" => 955 "Tamanyo" => 177838 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">a)<span class="elsevierStyleHsp" style=""></span>Exposición de raíz trigeminal. b)<span class="elsevierStyleHsp" style=""></span>Coagulación de la raíz. c)<span class="elsevierStyleHsp" style=""></span>Rizotomía parcial de los dos tercios ventrolaterales.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Jorge Díaz-Molina, Javier Orduna, David Rivero, Paula Alcázar, Luis Manuel González" "autores" => array:5 [ 0 => array:2 [ "nombre" => "Jorge" "apellidos" => "Díaz-Molina" ] 1 => array:2 [ "nombre" => "Javier" "apellidos" => "Orduna" ] 2 => array:2 [ "nombre" => "David" "apellidos" => "Rivero" ] 3 => array:2 [ "nombre" => "Paula" "apellidos" => "Alcázar" ] 4 => array:2 [ "nombre" => "Luis Manuel" "apellidos" => "González" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2529849624000388" "doi" => "10.1016/j.neucie.2024.07.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529849624000388?idApp=UINPBA00004B" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1130147324000654?idApp=UINPBA00004B" "url" => "/11301473/0000003500000005/v1_202409030459/S1130147324000654/v1_202409030459/es/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Clinical Research</span>" "titulo" => "Intradural anatomy and mobilization techniques of oculomotor, trochlear and abducens nerve after microsurgical dissection: a cadaveric study" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "253" "paginaFinal" => "262" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Oguz Altunyuva, Reyhan Kasab, Recep Fedakar, Selcuk Yilmazlar" "autores" => array:4 [ 0 => array:3 [ "nombre" => "Oguz" "apellidos" => "Altunyuva" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Reyhan" "apellidos" => "Kasab" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "Recep" "apellidos" => "Fedakar" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:4 [ "nombre" => "Selcuk" "apellidos" => "Yilmazlar" "email" => array:1 [ 0 => "selsus@uludag.edu.tr" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Bursa Uludag University, Faculty of Medicine, Department of Neurosurgery, Bursa, Türkiye" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Bursa Uludag University, Faculty of Medicine, Department of Forensic Medicine, Bursa, Türkiye" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Anatomía intradural y técnicas de movilización de los nervios oculomotor, troclear y abductor tras disección microquirúrgica: un estudio cadavérico" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1871 "Ancho" => 1675 "Tamanyo" => 220741 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">The distance between the entrance holes of both abducens nerves before dural dissection. ON: Optic nerve, ICA: Internal Carotid Artery, S: Stalk, DS: Dorsum Sella, C: Clivus, OcN: Oculomotor Nerve, TrN: Trigeminal Nerve, AN: Abducens nerve, Straight arrow: Between the places where bilateral abducens nerves pierce the clivus dura distance.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The importance of cadaveric anatomical studies remains paramount in neurosurgical practice despite the exploration of various teaching methods.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> The complex anatomy of the upper and middle clivus, particularly its relationship with surrounding neural and vascular structures and anatomical variations, necessitates a thorough understanding.<a class="elsevierStyleCrossRefs" href="#bib0010"><span class="elsevierStyleSup">2–4</span></a> Visualization from different three-dimensional perspectives can be advantageous for preventing complications and facilitating surgical management.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> Cadaveric studies are essential for understanding the normal anatomy of the upper clivus and its variations. Additionally, surgeons should be well-versed in the radiological anatomy before surgery. Advancements in neuronavigation, neuromonitoring, and intraoperative imaging have significantly improved surgical outcomes.<a class="elsevierStyleCrossRefs" href="#bib0030"><span class="elsevierStyleSup">6–8</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Due to critical neurovascular and anatomical bone structures, the upper and middle clival region is considered a difficult area to access. Despite the popularity of various transcranial surgical techniques and transnasal microscopic and endoscopic techniques, resection of various tumours in this region poses difficulties for neurosurgeons due to anatomical surgical limitations.<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3,9–11</span></a> While endoscopic methods offer access to the upper clivus, surgical resection can be challenging, particularly for intradural asymmetric pathologies.<a class="elsevierStyleCrossRefs" href="#bib0060"><span class="elsevierStyleSup">12,13</span></a> Lesions near or involving the clivus can be approached via anterior, ventrolateral, or dorsolateral pathways. Choosing the appropriate approach requires careful consideration of the patient's radiological and clinical picture, along with the critical neurovascular structures involved.<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10,11,14–17</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">This study presents a novel anatomical perspective for surgical intervention on lesions like meningiomas, craniopharyngiomas, chordomas, chondrosarcomas, and pituitary adenomas in the upper and middle clivus regions. A thorough understanding of the normal intradural and extradural course of the oculomotor, trochlear, and abducens nerves in this region is crucial for surgery. Mobilization of these cranial nerve pairs through dural incisions can expand the surgical field. Our study investigates the intradural/extradural anatomy of these nerves and explores mobilization techniques.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Material and methods</span><p id="par0020" class="elsevierStylePara elsevierViewall">This study used clinical samples from autopsies performed at Bursa Uludag University Neurosurgery Clinic between 2009 and 2019. Twenty cadaveric autopsy specimens were collected, not dissected, and stored in 10% formaldehyde solution. The study was approved by Uludag University Ethics Committee with approval number 2019−11/15 on 01/07/2019. The anatomical dissection used and reported by Ylmazlar et al.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> was modified according to their procedures, taking into account the study area. The upper-middle clivus region, polygon of Willis, cavernous sinuses, basilar artery, oculomotor, trochlear, trigeminal and abducens nerves were studied in block pieces in cadaveric specimens preserved in 10% formalin, preserving their course at the base of the skull. Twenty fixed cadaveric specimens were examined according to the rules of microsurgery, preserving the neural tissue, vascular structures and osseous structures of the skull base in the upper and middle clivus regions. The surgical anatomy was exposed fractionally during dissection. The relationship and proximity of the anatomical structures in the region were revealed by following the pre-defined surgical corridors. Each step of the anatomical dissection was performed with an operating microscope (Carl Zeiss OPMI PenteroTM, Jena, Germany) and a professional camera (Canon EOS 600DTM, Japan) and recorded with an operating endoscope (Karl Storz 26003 AA, BATM, Germany).</p><p id="par0025" class="elsevierStylePara elsevierViewall">Normal anatomical structures were examined prior to dissection. The relationships and variations of the neurovascular structures were noted. The dural structures adjacent to the cranial nerve and critical neurovascular components were dissected to widen the surgical approach, and anatomical structures were exposed by dissection when necessary. Digital measurement techniques (tpsDig version 2.17 software) were used on photographic images using a digital caliper on the anatomical region and metric measurements were taken.</p><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">A: Pre-Dissection Anatomical Examinations</span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">A.1: Qualitative Reviews</span><p id="par0030" class="elsevierStylePara elsevierViewall">Examples: In a quadrangular plan, the mesencephalon, pons and basilar artery were located posteriorly above the entrance holes of the nervous abducens to the clivus dura, the superior clivus anteriorly, the porus trigeminus and trochlear nerve openings in the dura laterally and the dorsum sella superiorly. The normal dura structure was preserved and the surrounding arachnoid adhesions were removed by dissection. The anterior choroidal artery, posterior cerebral artery and posterior communicating artery structures were preserved in the lateral view and their relationships with the surrounding neural structures were examined. Cross-sectional images were obtained from different anatomical windows by passing through natural corridors.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">A.2: Quantitative Reviews</span><p id="par0035" class="elsevierStylePara elsevierViewall">The dural porus, where both abducens nerves enter the clival dura, was identified and the distance between the nerves in the horizontal plane was measured. The mean and standard deviation of the anatomical measurements were obtained.</p></span></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">B: Anatomical Examinations After Intradural Dissection</span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">B.1: Qualitative Reviews</span><p id="par0040" class="elsevierStylePara elsevierViewall">The clival dura was removed as a sheet by separating the periosteal and meningeal dura with an incision made from the midline of the clivus. The inner and outer dural layers of the dorsum sella were removed together in the upper part, exposing the bone structure of the dorsum sella. In the lower part of the upper clivus, the meningeal dura was first lifted, the abducens nerve was pierced through the dura and the course under the Gruber ligament (the groove in which it advanced) was examined. By dissecting the outer dural layer, the abducens nerve was exposed between the two dural layers. The inner periosteal dural layer was then removed by dissection and the clivus bone was approached. The course of the abducens nerve in the cavernous sinus was examined by passing through Gruber's ligament. The trabecular structures within the cavernous sinus were examined. The dura was opened by dissection from the distal part of the dural foramen where the trochlear nerve enters the petroclinoid dura. The nerve was followed along its course and its course on the lateral wall of the cavernous sinus was simultaneously observed.</p><p id="par0045" class="elsevierStylePara elsevierViewall">The oculomotor triangle was opened by dural dissection. The outer dura was opened by dural dissection, and after releasing the outer dura of the oculomotor triangle, the oculomotor nerve was mobilized just before it entered the lateral wall of the cavernous sinus. The lateral dura of the cavernous sinus was then opened and the course of the nerve on the lateral wall of the cavernous sinus was observed.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">B.2: Quantitative Reviews</span><p id="par0050" class="elsevierStylePara elsevierViewall">Following intradural dissection, the abducens nerves on both sides were released to the petrous apex and their lateral mobilization distances were measured in the vertical plane. A total of 20 samples were analyzed. However, the trochlear nerve's course could not be followed in 5 due to its thinner and longer nature. Unlike other cranial nerves, the trochlear nerve enters the free edge of the tentorium cerebelli earlier, before reaching the cavernous sinus. Consequently, mobilization data for the oculomotor and trochlear nerves were obtainable in only 15 samples. We tabulated the numerical values of nerve mobilization for these 15 samples. Specifically, the length of the intradural course was measured, from the trochlear nerve's entry point to the cavernous sinus. Additionally, the closest distance to the posterior clinoid process was recorded. Finally, within the lateral wall of the cavernous sinus, the oculomotor and trochlear nerves were mobilized, their separation distance increased, and this distance was measured. The mean and standard deviation of all anatomical measurements were then calculated.</p></span></span></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Results</span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">A: Pre-Dissection Anatomical Examinations</span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">A.1: Qualitative Reviews</span><p id="par0055" class="elsevierStylePara elsevierViewall">After leaving the mesencephalon, the oculomotor nerves formed a groove on the posterior petroclinoid ligament and entered the oculomotor triangle from the inferolateral side of the anterior petroclinoid ligament. It was found that the trochlear nerves, which pass through the tentorial opening before the junction of the anterior and posterior petroclinoid ligaments on the petrous bone, begin their intradural course by entering the dura through the orifice formed by the folding of the medial and lateral leaves of the tentorial dura (<a class="elsevierStyleCrossRefs" href="#fig0005">Figs. 1,2</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">A.2: Quantitative Reviews</span><p id="par0060" class="elsevierStylePara elsevierViewall">The channel through which the two abducens nerves enter the clival dura was identified and the distance between them in the horizontal plane was measured. The mean distance was found to be 21.95 ± 4.53 mm (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">B: Anatomical Examinations After Intradural Dissection</span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">B.1: Qualitative Reviews</span><p id="par0065" class="elsevierStylePara elsevierViewall">The Gruber ligament was found in the basilar plexus between the periosteal and meningeal clival dura, just lateral to the trabecular structures. This is where the blood from the cavernous sinus drains directly, which can cause serious bleeding during surgery. The meningeal dura was found to form a canal to the Gruber ligament, surrounding the abducens nerve and forming the Gruber ligament through the periosteal dura. The periosteal dura was found to have lost its integrity posterior to the cavernous sinus, and the cavernous sinus began posterior to the Gruber ligament. Gruber's ligament was calcified on the right side in 2 of the 20 cadaver blocks and on both sides in 1. The abducens nerve passed laterally after passing through the meningeal dura and under the Gruber's ligament in all cadaver blocks. As in previous anatomical studies,<span class="elsevierStyleSup">5</span> the abducens nerve curved laterally between the dural porus and the Gruber ligament after entering the dura and after exiting the Gruber ligament. The abducens nerve enters the cavernous sinus lateral to the ICA, just after the Gruber ligament. The trabecular structures between the ICA and the nerve were weaker and less abundant than those between the lateral part of the nerve and the lateral wall of the cavernous sinus. The abducens nerve was curved in three places as it exited the pons. The first bend was identified as the dural porus, the second bend was identified as the Gruber ligament and the third bend was identified as the trabecular structures in the cavernous sinus (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>). The abducens nerve was mobilized laterally by dural dissection to the petrous apex, which is considered a safe margin.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0070" class="elsevierStylePara elsevierViewall">It was observed that the trochlear nerve began its intradural course by entering through the tentorial dura after the union of the anterior and posterior petroclinoid ligaments. After entering the dura, the nerve was surrounded on the upper part by the petroclinoid dura and on the lower part by the dura mater, which is the continuation of the superior trigeminal porus. The inferior dura formed a barrier between the gasserian ganglion and the trochlear nerve. After the nerve entered the dura, it was found to bend in two places. It made its first bend inferiorly after the dural porus. The second curve was made by a lateral bend as it continued in a straight line parallel to the dura along the petroclinoid dura and entered the lateral wall of the cavernous sinus, curving between the oculomotor branch at the top and the ophthalmic branch of the trigeminal nerve at the bottom. The closest point of the nerve to the posterior clinoid process was the fold line formed as it entered the lateral wall of the cavernous sinus (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>).</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0075" class="elsevierStylePara elsevierViewall">After leaving the mesencephalon, the oculomotor nerves formed a groove on the posterior petroclinoid ligament and entered the oculomotor triangle inferomedially of the anterior petroclinoid ligament. This dural groove on the posterior petroclinoid ligament formed the roof of the cavernous sinus. The nerve entered the oculomotor triangle via the dural groove by turning superiorly and then inferiorly on the dural groove formed by the posterior petroclinoid ligament. After its entry from the oculomotor triangle, the nerve passed directly to the lateral wall of the cavernous sinus. The oculomotor nerve, which curved inferolaterally during its passage, continued in a straight line within the lateral wall of the cavernous sinus with a parallel course to the trochlear nerve. There was no anatomical barrier between the oculomotor and trochlear nerves as they passed through the lateral wall of the cavernous sinus. The two nerves were parallel to each other (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>). A corridor was created between the two nerves within the lateral wall of the cavernous sinus, separating the nerves. When the trochlear nerve was released at the entrance to the petroclinoid ligament and the oculomotor nerve was released from the beginning of the lateral wall of the cavernous sinus, the mobility of both nerves increased.</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">B.2: Quantitative Reviews</span><p id="par0080" class="elsevierStylePara elsevierViewall">After intradural mobilization, the distances between the abducens nerves and between the oculomotor and trochlear nerves on the lateral wall of the cavernous sinus (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>) were evaluated. Following intradural dissection, the bilateral abducens nerves were released to the petrous apex and optimally mobilized laterally. Subsequently, the distances between the medial surfaces of these nerves were measured in the axial plane and compared to pre-mobilization values. The mean distance after mobilization was 26.18 ± 4.71 mm, with a mean separation of 4.21 ± 1.02 mm between the abducens nerves (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>). The oculomotor and trochlear nerves within the lateral wall of the cavernous sinus were also mobilized, and the distance between them was increased and measured. The average increase in the distance between these two nerves was 3.03 ± 0.41 mm on the right and 2.81 ± 0.79 mm on the left (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>). The table also presents the length of the intradural course, measured from the entrance of the trochlear nerve into the cavernous sinus, and the closest distances to the posterior clinoid process.</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia></span></span></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Discussion</span><p id="par0085" class="elsevierStylePara elsevierViewall">Surgical approaches for upper clival lesions (endoscopic or transcranial) depend on pathology type and its relationship to critical neurovascular structures. The lack of a standardized approach highlights the anatomical challenges and ongoing development of alternative methods like radiosurgery.<a class="elsevierStyleCrossRefs" href="#bib0075"><span class="elsevierStyleSup">15,18,19</span></a> The use of microscopes, endoscopes and navigation methods in the treatment of lesions in the clival region has increased the possibility of larger resections with fewer complications.<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9,20</span></a> Although there have been great advances in endoscopic and microscopic methods, it has become necessary to know the 360-degree anatomy of the region, as neural and vascular structures limit the surgical working corridors.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> Adequate bone decompression, dural release and arachnoid dissection of cranial nerves, vascular structures and critical neural structures in the region may increase the mobilization limits of cranial nerves and other critical neurovascular structures, facilitating surgical resection in an anterior endoscopic and posterior transcranial approach.</p><p id="par0090" class="elsevierStylePara elsevierViewall">Unlike traditional brain surgery, skull base surgery prioritizes bone removal (extradural) over brain retraction to access deep lesions. Techniques like transcavernous posterior clinoidectomy and petrosal approaches are some of the established methods to achieve this. These intradural maneuvers, along with extradural bone resection, expand the surgical corridor for better access, as evidenced by studies like Notaris et al.'s 42.8% increase using a combined endoscopic approach.<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a> By mobilizing cranial nerves and critical neurovascular structures through intradural dissection, surgeons can achieve a wider corridor for accessing lesions. This approach, coupled with extradural bone resection, minimizes brain retraction – a key factor in reducing surgical complications and potentially improving success rates.Doglietto et al.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a> compared and analysed several surgical windows that can be used when approaching clivus pathology and argued that the surgical field of study in the upper clivus region is significantly increased when the endoscopic transcranial approach is combined with intradural pituitary transposition. Although it is stated that transcranial approaches generally provide insufficient surgical space compared to endoscopic anterior approaches, adequate intradural dissection, resection and mobilization may increase the surgical workspace and facilitate safe access to the margins of the pathology.</p><p id="par0095" class="elsevierStylePara elsevierViewall">Studies have shown that the location and growth patterns of pathologies in this region influence surgical approaches.<a class="elsevierStyleCrossRefs" href="#bib0115"><span class="elsevierStyleSup">23,24</span></a> Intradural extra-axial tumors like schwannomas and meningiomas can displace neural structures, while extradural tumors like chordomas can invade them. Notably, meningiomas arising from the arachnoid layer (with dural blood supply) offer a distinct advantage. The arachnoid plane surrounding these tumors facilitates mobilization, often allowing for the preservation of nearby cranial nerves and blood vessels during surgery.</p><p id="par0100" class="elsevierStylePara elsevierViewall">Although intradural tumour structures such as schwannomas primarily affect the cranial nerve from which they originate, other cranial nerves from which they do not originate can be dissected without disturbing the arachnoid plane.<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">25</span></a> The tumour structures, such as chordoma and chondrosarcoma, can compress the arachnoid layer and entrap the cranial nerves by infiltrating the dural layer only with destruction of the bone and cartilage tissue.<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">26</span></a> Destructive invasive tumours, such as carcinomas and metastases, can cause extradural and intradural involvement and expansion and invasion of the nerve tissue. Upper clival tumor surgery requires meticulous evaluation of tumor type and its infiltration of bone, dura, and arachnoid layers. Preoperative imaging, intraoperative findings, and final pathology guide the extent of resection. Whenever feasible, intradural dissections should be employed to maximize neural tissue preservation. These dissections create a safe workspace, enabling millimeter-level mobilization of unaffected or compressed neural structures, ultimately enhancing surgical maneuverability. Our study exemplifies this approach, achieving wider surgical corridors through the mobilization of the oculomotor, trochlear, and abducens nerves. Within the upper clivus, the abducens nerve transitions from the Dorello canal into a critical structure. After entering the dural opening (porus), it courses between the two clival dura layers, passing beneath the Gruber ligament before reaching the cavernous sinus. The Gruber ligament, formed by folds in the periosteal dura, integrates anteriorly with the posterior wall of the cavernous sinus. Our study identified three distinct folds in the abducens nerve's trajectory: a dural foramen fold towards the petrous apex, an inferolateral angular fold towards the posterior cavernous sinus at the petrous apex level, and a final fold posterior to the internal carotid artery within the sinus. Knowledge of these anatomical details is paramount for planning safe nerve manipulation and minimizing traction during surgery. The abducens nerve's length and these folds heighten the risk of compression between dural layers during dissection. Therefore, a thorough understanding of its course is essential to prevent nerve injury during tumor resection and minimize the use of blind coagulation techniques. A prior cadaveric study (n = 24) by Aktas et al. identified a connective tissue attachment between the abducens nerve and the internal carotid artery (ICA) at the petrous apex.<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a> This dense collagenous tissue tethers the nerve, making it susceptible to injury during ICA retraction at this immobile segment. This finding underscores the importance of minimizing ICA manipulation during surgery to prevent abducens nerve palsy. In an anatomical study by Iaconette et al.<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">27</span></a> on 55 cadavers, the Gruber ligament was found to be calcified in 6% of cases and hypoplastic in 3%. Another anatomical study<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a> reported similar clinical findings in which the Gruber ligament was hypoplastic in one right and two left specimens and calcified in two left and two right specimens. In our study, calcification of the Gruber ligament was found on the right side in 2 of 20 cases and bilaterally in 1 case. Petroclival tumours can medially retract the abducens nerve and severely compress the nerve.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">28</span></a> Therefore, in the case of inadequate intradural dissection in the pathologies of the region, it may be necessary to dissect and open the Gruber ligament because the nerve may need to be released together with the canal dura from the level of the Dorello canal. Considering the cases of calcified Gruber's ligament in our study, it may be necessary to use fine drills to dissect the ligament during surgery. Because the abducens nerve passes just below the Gruber ligament, the drilling technique should be performed carefully. However, because the Gruber ligament is anteriorly integrated with the posterior wall of the cavernous sinus, there is a possibility of bleeding from the cavernous sinus during dissection. Because venous bleeding from the cavernous sinus may cause discomfort during surgery, dissection and mobilization of the intracavernosal segment of the nerve is difficult. According to the literature,<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a> the surgeon should evaluate the gain/loss ratio as the nerve is fixed by collagen fibres under the Gruber ligament, nerve retraction at this level can cause deficits, and the ligament is directly adjacent to the cavernous sinus.</p><p id="par0105" class="elsevierStylePara elsevierViewall">To minimize the risk of abducens nerve injury during surgery, intradural dissection should be restricted to the area between the dural entry point (porus) and its passage under the Gruber ligament. This approach is crucial as the nerve exhibits fixation at the petrous apex, and retraction at this location can lead to neurological deficits. Our study investigated the effectiveness of this technique in maximizing surgical space by evaluating the extent of mobilization achievable for the bilateral abducens nerves. In normal anatomy, the average distance between the two nerves was 21.95 ± 4.53 mm. Notably, following safe intradural dissection, this distance significantly increased to 26.18 ± 4.71 mm, representing a gain of 4.21 ± 1.02 mm. This additional space created by abducens nerve mobilization translates to a wider surgical corridor, facilitating better access and manipulation during surgery in this region. Our study also explored trochlear nerve mobilization for corridor expansion. Notably, the trochlear nerve entered the cavernous sinus directly after dural penetration, following a straight course within the lateral wall. This wall itself presented a laterally curved petroclinoid dural layer. We observed that intradural dissection performed anteriorly from the dural entry point of both trochlear and oculomotor nerves facilitated increased nerve mobilization (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>). This mobilization allowed for separation of the nerves from each other and from skull base structures like the posterior clinoids. However, during dissection, it's crucial to preserve the medial layer of the cavernous sinus wall and avoid excessive manipulation that could stretch the nerve pair after exiting the brainstem, thereby minimizing the risk of nerve damage. Iaconnetta et al.<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">29</span></a> divided the course of the fourth nerve into five segments: cisternal, tentorial, cavernous, fissural and orbital. Tubbs et al.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> recently defined the trigonal segment. In our study, when we examined the tentorial, trigonal and cavernous segments of the trochlear nerve, it was observed that after passing through the tentorium cerebelli, the tentorial segment entered the dura at the junction of the medial and lateral tentorial dural leaves, just behind the junction of the anterior and posterior petroclinoid ligaments. After entering the dura, the trochlear nerve formed an inferior fold, then a straight course and a second lateral fold at the entrance to the lateral wall of the cavernous sinus (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>). Tubbs et al.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> reported that the release of the trochlear nerve with dural dissection provides an advantage by increasing manipulation in regional surgery. According to our study, observing both folds along the intradural course of the trochlear nerve during dural dissection is safer than dissection from the proximal to distal direction, starting from the point where it enters the dura, because it allows the nerve to be followed. Because of the thinness of the dural layer between the trochlear nerve and the gasserian ganglion, careful inferior release of the nerve and avoidance of opening the inferior dura during dissection may prevent possible trigeminal nerve injury. Trochlear nerve release may also be advantageous in combined middle fossa approaches, such as the Kawase technique. In the Kawase approach, the tentorial dura is released approximately 6 mm from the trigeminal foramen.<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">31</span></a> Injury to the trochlear nerve may occur during release. Therefore, we propose mobilizing the trochlear nerve to reduce injury risk. This can be achieved by following its course at the dural opening (porus) and carefully dissecting it anteriorly within the surgical field to the extent possible. Gupta et al.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">32</span></a> measured the intradural course of the trochlear nerve from the free edge of the tentorium to the entrance of the cavernous sinus and found an average of 10 mm (3.4−15 mm), whereas in our study it was 9.07 ± 1.83 mm on the right and 9.29 ± 1.77 mm on the left. Our results are in agreement with the literature. The closest distance between the trochlear nerve and the posterior clinoid process was 7.07 ± 1.42 mm on the right and 7.71 ± 1.61 mm on the left. The trochlear nerve's close proximity to the posterior clinoid process emphasizes the importance of dural protection during surgeries involving the clinoid, particularly for lesions like chordoma and meningioma. However, if the mass extends towards the cerebellopontine angle without compressing the nerve's dural opening, intradural dissection might be unnecessary. Since the trochlear nerve is encased by a tight dural sheath, excessive dissection could lead to nerve damage and further complications. Due to its proximity in the upper clivus, oculomotor nerve mobilization can enlarge the surgical corridor. Our study identified the lateral cavernous sinus wall as the optimal site for dissection. However, this approach risks bleeding from the dural groove housing the nerve, formed by the posterior petroclinoid ligament. Medial dissection techniques face similar limitations. A lateral approach to the cavernous sinus offers wider access, but necessitates meticulous dissection to avoid injuring the trochlear nerve positioned directly below the oculomotor nerve. Unlike a distinct barrier, these nerves course parallel within the lateral wall. Our study demonstrates the feasibility of separating them by carefully mobilizing the trochlear nerve along the petroclinoid ligament. This technique increased the nerve separation distance by an average of 3.03 mm on the right and 2.81 mm on the left, creating a novel and potentially safer corridor for accessing cavernous sinus lesions.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Conclusion</span><p id="par0110" class="elsevierStylePara elsevierViewall">Surgery in the upper clivus and subchiasmal regions presents a significant challenge due to its deep location, proximity to critical nerves and blood vessels, and limited surgical corridor. A thorough preoperative evaluation, encompassing surrounding structures like the third ventricle, cavernous sinuses, and cranial nerves III-VI, is essential.</p><p id="par0115" class="elsevierStylePara elsevierViewall">This study investigated mobilization techniques for transcranial surgery to improve access and potentially enhance surgical outcomes. We observed the detailed anatomy of cranial nerves III, IV, and VI, particularly their relationship with the dura, bone, and each other. Furthermore, we demonstrated that intradural dissection facilitates mobilization of these nerves, offering greater surgical manipulability. This study, the first to explore such mobilization techniques, has the potential to pave the way for safer and more effective surgery in this complex anatomical area.</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Conflicts of interest</span><p id="par0120" class="elsevierStylePara elsevierViewall">Nothing to declare.</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0155">Source of funding</span><p id="par0125" class="elsevierStylePara elsevierViewall">None.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres2234333" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1870263" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres2234332" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1870262" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Material and methods" "secciones" => array:2 [ 0 => array:3 [ "identificador" => "sec0015" "titulo" => "A: Pre-Dissection Anatomical Examinations" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0020" "titulo" => "A.1: Qualitative Reviews" ] 1 => array:2 [ "identificador" => "sec0025" "titulo" => "A.2: Quantitative Reviews" ] ] ] 1 => array:3 [ "identificador" => "sec0030" "titulo" => "B: Anatomical Examinations After Intradural Dissection" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "B.1: Qualitative Reviews" ] 1 => array:2 [ "identificador" => "sec0040" "titulo" => "B.2: Quantitative Reviews" ] ] ] ] ] 6 => array:3 [ "identificador" => "sec0045" "titulo" => "Results" "secciones" => array:2 [ 0 => array:3 [ "identificador" => "sec0050" "titulo" => "A: Pre-Dissection Anatomical Examinations" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0055" "titulo" => "A.1: Qualitative Reviews" ] 1 => array:2 [ "identificador" => "sec0060" "titulo" => "A.2: Quantitative Reviews" ] ] ] 1 => array:3 [ "identificador" => "sec0065" "titulo" => "B: Anatomical Examinations After Intradural Dissection" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0070" "titulo" => "B.1: Qualitative Reviews" ] 1 => array:2 [ "identificador" => "sec0075" "titulo" => "B.2: Quantitative Reviews" ] ] ] ] ] 7 => array:2 [ "identificador" => "sec0080" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0085" "titulo" => "Conclusion" ] 9 => array:2 [ "identificador" => "sec0090" "titulo" => "Conflicts of interest" ] 10 => array:2 [ "identificador" => "sec0095" "titulo" => "Source of funding" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2024-02-20" "fechaAceptado" => "2024-05-30" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1870263" "palabras" => array:5 [ 0 => "Upper clival region" 1 => "Subchiasmal region" 2 => "Oculomotor nerve" 3 => "Trochlear nerve" 4 => "Abducens nerve" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1870262" "palabras" => array:5 [ 0 => "Región clival superior" 1 => "Región subquiasmática" 2 => "Nervio oculomotor" 3 => "Nervio troclear" 4 => "Nervio abducens" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Background</span><p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">This study investigates the mobilization of cranial nerves in the upper clival region to improve surgical approaches. Cadaveric specimens (n = 20) were dissected to examine the oculomotor, trochlear, and abducens nerves. Dissection techniques focused on the nerves' intradural course and their relationship to surrounding structures.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Pre-dissection revealed the nerves' entry points into the clival dura and their proximity to each other. Measurements were taken to quantify these distances. Following intradural dissection, measurements were again obtained to assess the degree of nerve mobilization.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">Dissection showed that the abducens nerve takes three folds during its course: at the dural foramen, towards the posterior cavernous sinus, and lastly within the cavernous sinus. The trochlear nerve enters the dura and makes two bends before entering the cavernous sinus. The oculomotor nerve enters the cavernous sinus directly and runs parallel to the trochlear nerve. Importantly, intradural dissection increased the space between the abducens nerves (by 4.21 mm) and between the oculomotor and trochlear nerves (by 3.09 mm on average). This indicates that nerve mobilization can create wider surgical corridors for approaching lesions in the upper clivus region.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0085" class="elsevierStyleSimplePara elsevierViewall">This study provides a detailed anatomical analysis of the oculomotor, trochlear, and abducens nerves in the upper clivus. The cadaveric dissections and measurements demonstrate the feasibility of mobilizing these nerves to achieve wider surgical corridors. This information can be valuable for surgeons planning endoscopic or microscopic approaches to lesions in the upper clivus region.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Objetivo</span><p id="spar0090" class="elsevierStyleSimplePara elsevierViewall">Este estudio investiga la movilización de los nervios craneales en la región clival superior para mejorar los abordajes quirúrgicos. Se diseccionaron ejemplares de cadáveres (n = 20) para examinar los nervios oculomotor, troclear y abducens. Las técnicas de disección se centraron en el trayecto intradural de los nervios y su relación con las estructuras circundantes.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0095" class="elsevierStyleSimplePara elsevierViewall">La pre-disección reveló los puntos de entrada de los nervios en la dura clival y su proximidad entre sí. Se tomaron medidas para cuantificar estas distancias. Tras la disección intradural, se volvieron a obtener medidas para evaluar el grado de movilización nerviosa.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0100" class="elsevierStyleSimplePara elsevierViewall">La disección mostró que el nervio abducens da tres pliegues durante su recorrido: en el foramen dural, hacia el seno cavernoso posterior y por último dentro del seno cavernoso. El nervio troclear ingresa en la dura y realiza dos curvas antes de entrar en el seno cavernoso. El nervio oculomotor entra directamente en el seno cavernoso y corre paralelo al nervio troclear. Es importante destacar que la disección intradural aumentó el espacio entre los nervios abducens (en 4,21 mm) y entre los nervios oculomotor y troclear (en 3,09 mm de promedio). Esto indica que la movilización nerviosa puede crear corredores quirúrgicos más amplios para abordar lesiones en la región del clivus superior.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0105" class="elsevierStyleSimplePara elsevierViewall">Este estudio proporciona un análisis anatómico detallado de los nervios oculomotor, troclear y abducens en el clivus superior. Las disecciones y mediciones de cadáveres demuestran la viabilidad de movilizar estos nervios para lograr corredores quirúrgicos más amplios. Esta información puede ser valiosa para los cirujanos que planean abordajes endoscópicos o microscópicos de lesiones en la región del clivus superior.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "multimedia" => array:8 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1453 "Ancho" => 2925 "Tamanyo" => 349600 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Dissection views of the trochlear and oculomotor nerves before Pre-intradural dissection (a) The course of the right trochlear nerve between the lateral and medial tentorial dural leaf and dural porus. (b) Posterior view of the right trochlear nerve at dural porus entrance. OcN: Oculomotor Nerve, TN: Trochlear Nerve, TrN: Trigeminal Nerve, AN: Abducens Nerve, MTD: Tentorial Dura Medial Leaf, LTD: Tentorial Dura Lateral leaf, C: Clivus, DS: Dorsum Sella, APL: Anterior Petroclinoid Ligament, PPL: Posterior Petroclinoid Ligament, black arrow: Dural porus of the trochlear nerve.</p>" ] ] 1 => array:8 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1833 "Ancho" => 1675 "Tamanyo" => 307259 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Lateral view of the course of the trochlear and oculomotor nerves. OcN: Oculomotor Nerve, TN: Trochlear Nerve, TrN: Trigeminal Nerve, BA: Basilar Artery, ICA: Internal Carotid Artery, MCA: Middle cerebral artery, PComA: Posterior Communicating Artery, AChA: Anterior Choroidal Artery, PCA: Posterior Cerebral Artery, SCA: Superior Cerebellar Artery, PcD: Petroclinoid Dura, LCS: Cavernous Sinus Lateral Wall, LTD: Lateral Tentorial Dura, MTD: Medial Tentorial Dura, MB: Midbrain.</p>" ] ] 2 => array:8 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1871 "Ancho" => 1675 "Tamanyo" => 220741 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">The distance between the entrance holes of both abducens nerves before dural dissection. ON: Optic nerve, ICA: Internal Carotid Artery, S: Stalk, DS: Dorsum Sella, C: Clivus, OcN: Oculomotor Nerve, TrN: Trigeminal Nerve, AN: Abducens nerve, Straight arrow: Between the places where bilateral abducens nerves pierce the clivus dura distance.</p>" ] ] 3 => array:8 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1555 "Ancho" => 3508 "Tamanyo" => 384594 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0020" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Course of abducens nerve after intradural dissection. (a) Posterior view of the extradural, intradural and intracavernous course of the abducens nerve with an operating microscope. (b) Posterior endoscopic view of the intradural and intracavernosal course of the abducens nerve. (c) Microscopic view of the abducens nerve's relationship with the ICA when the cavernous sinus trabecular structures are cleared. AN: Abducens Nerve, GL: Gruber Ligament, ICA: Internal Carotid Artery, TrN: Trigeminal Nerve, PcD: Petroclinoid Dura, LCS: Lateral cavernous sinus wall, T: Trabecular structures within the cavernous sinus I: Extradural segment of abducens nerve, II: Intradural segment of abducens nerve (inside Dorello canal), III: Intracavernosal segment of abducens nerve.</p>" ] ] 4 => array:8 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1119 "Ancho" => 3508 "Tamanyo" => 343605 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0025" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">View of the intradural course of the trochlear nerve. Lateral (a), upper (b), and endoscope (c) views of the left trochlear nerve with the operating microscope. ON: Optic nerve, ICA: Internal Carotid Artery, TN: Trochlear Nerve, GG: Gasserian Ganglion, OcN: Oculomotor Nerve, TrN: Trigeminal Nerve, PcD: Petroclinoid Dura, PCP: Posterior Clinoid Process, LTD: Lateral Tentorial Dura, MTD: Medial Tentorial Dura, 1: Extradural segment of the trochlear nerve, 2: Intradural segment running in a straight line within the petroclinoid dura, 3: Intracavernosal segment running within the lateral wall of the cavernous sinus, short black arrow: Entry and first bend of the trochlear nerve from the dural porus, long black arrow: Entry of the trochlear nerve into the lateral wall of the cavernous sinus and its second loop.</p>" ] ] 5 => array:8 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 1058 "Ancho" => 3341 "Tamanyo" => 235824 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0030" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Course of the oculomotor nerve. (a) The dural groove where the oculomotor nerve lodges over the posterior petroclinoid ligament before intradural dissection. (b) Intradural course of the oculomotor nerve within the lateral wall of the cavernous sinus. OcN: Oculomotor Nerve, TN: Trochlear Nerve, DS: Dorsum Sella, APL: Anterior Petroclinoid Ligament, PPL: Posterior Petroclinoid Ligament, PcD: Petroclinoid Dura, LCS: Lateral Wall of Cavernous Sinus, MCS: Medial Wall of Cavernous Sinus, PCP: Posterior Clinoid Process, GG: Gasser Ganglion, black arrows: indicate the beginning and ending boundaries of the dural groove on the PPL where OcN is located.</p>" ] ] 6 => array:8 [ "identificador" => "fig0035" "etiqueta" => "Fig. 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 1037 "Ancho" => 3508 "Tamanyo" => 396327 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0035" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">After intradural mobilization, the increase in distance between the nerves. Mobilization of the abducens nerve; (a) normal course of the right abducens nerve after intradural dissection, (b) lateral mobilization of abducens nerve liberated at dural porus level by dissection. Mobilization of the oculomotor and trochlear nerves on the lateral wall of the cavernous sinüs; (c) lateral view of the trochlear and oculomotor nerve after intradural dissection without mobilization, (d) image of increased distance between nerves after mobilization of oculomotor and trochlear nerves. AN: Abducens Nerve, GL: Gruber Ligament, Straight arrow: normal course of abducens nerve. ON: Optic nerve, OcN: Oculomotor Nerve, TN: Trochlear Nerve, ICA: Internal Carotid Artery, AChA: Anterior Choroidal Artery, BA: Basilar Artery, PCA: Posterior Cerebral Artery, SCA: Superior Cerebellar Artery, MB: Midbrain, Black bar: Position of the abducens nerve without mobilization, White bar: Increase in the distance between the oculomotor and trochlear nerves.</p>" ] ] 7 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0040" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">A: Distance between the dural entry holes of bilateral abducens nerves Mean ± SD (mm).</p><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">B: Results of distance measurement between abducens nerves before and after mobilization Mean ± SD (mm), B1: Distance after mobilization, B2: Distance gained with mobilization.</p><p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">C: Intradural course lengths of the trochlear nerve until its entry into the lateral wall of the cavernous sinüs, Mean ± SD (mm).</p><p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">D: Distances at which the trochlear nerve is closest to the posterior clinoid process. Mean ± SD (mm).</p><p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">E: The average increase in the distance between oculomotor and trochlear nerves after mobilization, Mean ± SD (mm).</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Total Sample No \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">A (n = 20) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">B1 (n = 20) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">B2 (n = 20) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">C (n = 20)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">D (n = 20)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">E (n = 15)</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21,95 ± 4,53 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">26,18 ± 4,71 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4,21 ± 1,02 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Right: 9,07 ± 1,83 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Left: 9,29 ± 1,77 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Right: 7,07 ± 1,42 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Left: 7,71 ± 1,61 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Right:3.03 ± 0.41 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Left:2.81 ± 0.79 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3642037.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Anatomical measurement results of the abducens, oculomotor, trochlear nerves.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:32 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pig as a large animal model for posterior fossa surgery in oto-neurosurgery: a cadaveric study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Elsayed" 1 => "R. Torres" 2 => "O. Sterkers" 3 => "D. Bernardeschi" 4 => "Y. Nguyen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0212855" "Revista" => array:4 [ "tituloSerie" => "PloS One" "fecha" => "2019" "volumen" => "14" "numero" => "2" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Petroclival tumors: a paternalistic challenge" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.J. Russin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wneu.2015.04.014" "Revista" => array:7 [ "tituloSerie" => "World Neurosurg" "fecha" => "2015" "volumen" => "84" "numero" => "2" "paginaInicial" => "231" "paginaFinal" => "232" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25888810" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Endoscopic endonasal transclival approach to tumors of the clivus and anterior region of the posterior cranial fossa: an anatomic study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.N. Shkarubo" 1 => "K.V. Koval" 2 => "M.A. Shkarubo" 3 => "I.V. Chernov" 4 => "D.N. Andreev" 5 => "A.A. Panteleyev" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wneu.2018.07.275" "Revista" => array:6 [ "tituloSerie" => "World Neurosurg" "fecha" => "2018" "volumen" => "119" "paginaInicial" => "e825" "paginaFinal" => "e841" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30096504" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The clival canal" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "D. De Campos" 1 => "G.P. Jotz" 2 => "G.R. Goulart" 3 => "T. Malysz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1590/0004-282X20150165" "Revista" => array:6 [ "tituloSerie" => "Arq Neuropsiquiatr" "fecha" => "2015" "volumen" => "73" "numero" => "12" "paginaInicial" => "1047" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26465285" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A comprehensive review of the clivus: anatomy, embryology, variants, pathology, and surgical approaches" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "R. Rai" 1 => "J. Iwanaga" 2 => "G. Shokouhi" 3 => "M. Loukas" 4 => "M.M. Mortazavi" 5 => "R.J. Oskouian" 6 => "R.S. Tubbs" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00381-018-3875-x" "Revista" => array:7 [ "tituloSerie" => "Childs Nerv Syst" "fecha" => "2018" "volumen" => "34" "numero" => "8" "paginaInicial" => "1451" "paginaFinal" => "1458" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29955940" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Benign and malignant diseases of the clivus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Neelakantan" 1 => "A.K. Rana" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.crad.2014.07.010" "Revista" => array:6 [ "tituloSerie" => "Clin Radiol" "fecha" => "2014" "volumen" => "69" "numero" => "12" "paginaInicial" => "1295" "paginaFinal" => "1303" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Development of a new image-guided neuronavigation system: Mixed-reality projection mapping is accurate and feasible" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "T. Koike" 1 => "T. Kin" 2 => "S. Tanaka" 3 => "K. Sato" 4 => "T. Uchida" 5 => "Y. Takeda" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/ons/opab353" "Revista" => array:6 [ "tituloSerie" => "Oper Neurosurg" "fecha" => "2021" "volumen" => "21" "numero" => "6" "paginaInicial" => "549" "paginaFinal" => "557" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: a systematic review and meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:8 [ 0 => "C. Tuleasca" 1 => "H.A. Leroy" 2 => "I.P. Florianu" 3 => "O. Strachowski" 4 => "B. Derre" 5 => "M. Levivier" 6 => "M. Schulder" 7 => "N. Reyns" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10143-021-01488-3" "Revista" => array:6 [ "tituloSerie" => "Neurosurg Rev" "fecha" => "2021" "volumen" => "44" "numero" => "6" "paginaInicial" => "2977" "paginaFinal" => "2990" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transnasal endoscopic surgical approaches to the clivus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.C. Stamm" 1 => "S.S.N. Pignatari" 2 => "E. Vellutini" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.otc.2006.01.010" "Revista" => array:7 [ "tituloSerie" => "Otolaryngol Clin North Am" "fecha" => "2006" "volumen" => "39" "numero" => "3" "paginaInicial" => "639" "paginaFinal" => "656" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16757236" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surgical anatomy of the petrous apex and petroclival region" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H.D. Fournier" 1 => "P. Mercier" 2 => "P.H. Roche" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/978-3-211-47423-5_5" "Revista" => array:6 [ "tituloSerie" => "Adv Tech Stand Neurosurg" "fecha" => "2007" "volumen" => "32" "paginaInicial" => "91" "paginaFinal" => "146" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17907476" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surgical anatomy and dissection of the petrous and peripetrous area. Anatomic basis of the lateral approaches to the skull base" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "H.D. Fournier" 1 => "P. Mercier" 2 => "S. Velut" 3 => "B. Reigner" 4 => "P. Cronier" 5 => "J. Pilletet" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/BF01627587" "Revista" => array:6 [ "tituloSerie" => "Surg Radiol Anat" "fecha" => "1994" "volumen" => "16" "numero" => "2" "paginaInicial" => "143" "paginaFinal" => "148" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Endoscopic anatomic study via grinding partial petrous ridge to the middle fossa in retromastoid keyhole approach" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Tang" 1 => "L. Pang" 2 => "H. Zhang" 3 => "Z. Yan" 4 => "X. Wang" 5 => "L. Dong" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/SCS.0000000000004275" "Revista" => array:6 [ "tituloSerie" => "J Craniofac Surg" "fecha" => "2018" "volumen" => "29" "numero" => "4" "paginaInicial" => "e345" "paginaFinal" => "e349" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ventral brainstem anatomy: an endoscopic transoral perspective" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "O. De Divitiis" 1 => "A. Conti" 2 => "T. Somma" 3 => "F. Angileri" 4 => "P. Cappabianca" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/978-3-319-62515-7_7" "Revista" => array:6 [ "tituloSerie" => "Acta Neurochir Suppl" "fecha" => "2019" "volumen" => "125" "paginaInicial" => "45" "paginaFinal" => "50" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30610301" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transpetrosal approaches to the clivus. Surgical anatomy, challenges and limitations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "H.D. Fournier" 1 => "P. Mercier" 2 => "P. Menei" 3 => "G. Alhayek" 4 => "G. Guy" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Neurochirurgie" "fecha" => "1995" "volumen" => "41" "numero" => "1" "paginaInicial" => "6" "paginaFinal" => "27" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7651573" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Safe corridor to access clivus for endoscopic trans-sphenoidal surgery: a radiological and anatomical study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Y. Cheng" 1 => "S. Zhang" 2 => "Y. Chen" 3 => "G. Zhao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0137962" "Revista" => array:4 [ "tituloSerie" => "PloS One" "fecha" => "2015" "volumen" => "10" "numero" => "9" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The far-lateral approach and its variations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G.J. Velat" 1 => "R.F. Spetzler" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wneu.2011.04.009" "Revista" => array:7 [ "tituloSerie" => "World Neurosurg" "fecha" => "2012" "volumen" => "77" "numero" => "5-6" "paginaInicial" => "619" "paginaFinal" => "620" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22120396" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Classification and quantification of the petrosal approach to the petroclival region" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "M.A. Horgan" 1 => "G.J. Anderson" 2 => "J.X. Kellogg" 3 => "M.S. Schwartz" 4 => "S. Spektor" 5 => "S.O. McMenomey" 6 => "J.B. Delashawet" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/jns.2000.93.1.0108" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2000" "volumen" => "93" "numero" => "1" "paginaInicial" => "108" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10883912" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surgical limits in transnasal approach to opticocarotid region and planum sphenoidale: an anatomic cadaveric study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T. Ozcan" 1 => "S. Yilmazlar" 2 => "S. Aker" 3 => "E. Korfali" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wneu.2010.01.015" "Revista" => array:6 [ "tituloSerie" => "World Neurosurg" "fecha" => "2010" "volumen" => "73" "numero" => "4" "paginaInicial" => "326" "paginaFinal" => "333" ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Long-term outcomes of grade I/II skull base chondrosarcoma: an insight into the role of surgery and upfront radiotherapy" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Hasegawa" 1 => "K. Vakharia" 2 => "C.S. Graffeo" 3 => "M.L. Carlson" 4 => "B.E. Pollock" 5 => "P.D. Brown" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11060-021-03764-0" "Revista" => array:7 [ "tituloSerie" => "J Neurooncol" "fecha" => "2021" "volumen" => "153" "numero" => "2" "paginaInicial" => "273" "paginaFinal" => "281" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33907967" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Long-term outcomes of grade I/II skull base chondrosarcoma: an insight into the role of surgery and upfront radiotherapy" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Hasegawa" 1 => "K. Vakharia" 2 => "C.S. Graffeo" 3 => "M.L. Carlson" 4 => "B.E. Pollock" 5 => "P.D. Brown" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11060-021-03764-0" "Revista" => array:7 [ "tituloSerie" => "J Neurooncol" "fecha" => "2021" "volumen" => "153" "numero" => "2" "paginaInicial" => "273" "paginaFinal" => "281" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33907967" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Frontolateral approach combined with endoscopic endonasal extradural posterior clinoidectomy to the upper clival region: anatomic and feasibility study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Notaris" 1 => "L. Laleva" 2 => "T. Sipirev" 3 => "I. Dallan" 4 => "G.D. Nuzzo" 5 => "J. Pineda" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wneu.2017.12.047" "Revista" => array:6 [ "tituloSerie" => "World Neurosurg" "fecha" => "2018" "volumen" => "111" "paginaInicial" => "86" "paginaFinal" => "93" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29269065" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transnasal endoscopic and lateral approaches to the clivus: a quantitative anatomic study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "F. Doglietto" 1 => "M. Ferrari" 2 => "D. Matavelli" 3 => "F. Belotti" 4 => "V. Rampinelli" 5 => "H. Kheshaifat" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wneu.2018.02.118" "Revista" => array:6 [ "tituloSerie" => "World Neurosurg" "fecha" => "2018" "volumen" => "113" "paginaInicial" => "e659" "paginaFinal" => "e671" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29499424" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anatomical restrictions in the transsphenoidal, transclival approach to the upper clival region: a cadaveric, anatomic study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "U. Aktas" 1 => "S. Yilmazlar" 2 => "N. Ugras" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcms.2012.11.011" "Revista" => array:7 [ "tituloSerie" => "J Craniomaxillofac Surg" "fecha" => "2013" "volumen" => "41" "numero" => "6" "paginaInicial" => "457" "paginaFinal" => "467" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23257317" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Parasellar meningiomas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "T. Graillon" 1 => "J. Regis" 2 => "A. Barlier" 3 => "T. Brue" 4 => "H. Dufour" 5 => "M. Buchfelder" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000509090" "Revista" => array:7 [ "tituloSerie" => "Neuroendocrinology" "fecha" => "2020" "volumen" => "110" "numero" => "9-10" "paginaInicial" => "780" "paginaFinal" => "796" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32492684" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Petrous bone lesions: surgical implementation and outcomes of extradural subtemporal approach" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "U. Bawornvaraporn" 1 => "A.R. Zomorodi" 2 => "A.H. Friedman" 3 => "T. Fukushima" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00701-021-04962-5" "Revista" => array:6 [ "tituloSerie" => "Acta neurochir (Wien)" "fecha" => "2021" "volumen" => "163" "numero" => "10" "paginaInicial" => "2881" "paginaFinal" => "2894" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mid-term follow-up surgical results in 284 cases of clival chordomas: the risk factors for outcome and tumor recurrence" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Bai" 1 => "M. Li" 2 => "J. Shi" 3 => "L. Jing" 4 => "Y. Zhai" 5 => "S. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10143-021-01576-4" "Revista" => array:7 [ "tituloSerie" => "Neurosurg Rev" "fecha" => "2022" "volumen" => "45" "numero" => "2" "paginaInicial" => "1451" "paginaFinal" => "1462" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34623525" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The abducens nerve: microanatomic and endoscopic study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "G. Iaconetta" 1 => "M. Fusco" 2 => "L.M. Cavallo" 3 => "P. Cappabianca" 4 => "M. Samii" 5 => "M. Tschabitscher" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/01.neu.0000289706.42061.19" "Revista" => array:7 [ "tituloSerie" => "Neurosurgery" "fecha" => "2007" "volumen" => "61" "numero" => "3 Suppl" "paginaInicial" => "7" "paginaFinal" => "14" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17876228" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The Dorello canal: historical development, controversies in microsurgical anatomy, and clinical implications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "V.R. Kshettry" 1 => "J.H. Lee" 2 => "M. Ammirati" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2012.11.FOCUS12344" "Revista" => array:6 [ "tituloSerie" => "Neurosurg Focus" "fecha" => "2013" "volumen" => "34" "numero" => "3" "paginaInicial" => "E4" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23724838" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The trochlear nerve: microanatomic and endoscopic study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G. Iaconetta" 1 => "M. Notaris" 2 => "A. Benet" 3 => "J. Rincon" 4 => "L.M. Cavallo" 5 => "A.P. Galino" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10143-012-0426-x" "Revista" => array:6 [ "tituloSerie" => "Neurosug Rev" "fecha" => "2013" "volumen" => "36" "numero" => "2" "paginaInicial" => "227" "paginaFinal" => "237" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A new segment of the trochlear nerve: cadaveric study with application to skull base surgery" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "R.S. Tubbs" 1 => "P. Veith" 2 => "C.J. Griessenauer" 3 => "M. Loukas" 4 => "A.A. Cohen-Gadol" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1055/s-0033-1349787" "Revista" => array:7 [ "tituloSerie" => "J Neurol Surg B Skull Base" "fecha" => "2014" "volumen" => "75" "numero" => "1" "paginaInicial" => "8" "paginaFinal" => "10" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24498583" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Conquering the Rock-A Retrospective Single-Center Experience of the Transapical Petrosal Transtentorial (Kawase) Approach: Operative Technique and Impact on Cranial Nerve Function" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "V. Volovici" 1 => "R. Dammers" 2 => "C.M.F. Dirven" 3 => "E.J. Delwel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1055/s-0039-1692485" "Revista" => array:6 [ "tituloSerie" => "J Neurol Surg Skull Base" "fecha" => "2020" "volumen" => "81" "numero" => "5" "paginaInicial" => "526" "paginaFinal" => "535" ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anatomy of the tentorial segment of the trochlear nerve in reference to its preservation during surgery for skull base lesions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "T. Gupta" 1 => "S.K. Gupta" 2 => "D. Sahni" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00276-014-1278-6" "Revista" => array:7 [ "tituloSerie" => "Surg Radiol Anat" "fecha" => "2014" "volumen" => "36" "numero" => "10" "paginaInicial" => "967" "paginaFinal" => "971" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24623122" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/11301473/0000003500000005/v1_202409030459/S1130147324000666/v1_202409030459/en/main.assets" "Apartado" => array:4 [ "identificador" => "393" "tipo" => "SECCION" "es" => array:2 [ "titulo" => "Investigación Clínica" "idiomaDefecto" => true ] "idiomaDefecto" => "es" ] "PDF" => "https://static.elsevier.es/multimedia/11301473/0000003500000005/v1_202409030459/S1130147324000666/v1_202409030459/en/main.pdf?idApp=UINPBA00004B&text.app=https://revistaneurocirugia.com/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1130147324000666?idApp=UINPBA00004B" ]
Información de la revista
Compartir
Descargar PDF
Más opciones de artículo
Clinical Research
Intradural anatomy and mobilization techniques of oculomotor, trochlear and abducens nerve after microsurgical dissection: a cadaveric study
Anatomía intradural y técnicas de movilización de los nervios oculomotor, troclear y abductor tras disección microquirúrgica: un estudio cadavérico