array:24 [ "pii" => "S2529849618300352" "issn" => "25298496" "doi" => "10.1016/j.neucie.2018.09.001" "estado" => "S300" "fechaPublicacion" => "2018-11-01" "aid" => "343" "copyright" => "Sociedad Española de Neurocirugía" "copyrightAnyo" => "2018" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurocirugia. 2018;29:275-95" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S113014731830068X" "issn" => "11301473" "doi" => "10.1016/j.neucir.2018.06.005" "estado" => "S300" "fechaPublicacion" => "2018-11-01" "aid" => "343" "copyright" => "Sociedad Española de Neurocirugía" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurocirugia. 2018;29:275-95" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 46 "formatos" => array:2 [ "HTML" => 30 "PDF" => 16 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Investigación clínica</span>" "titulo" => "Anatomía microquirúrgica en 3<span class="elsevierStyleHsp" style=""></span>D del tracto corticoespinal y de la vía del lemnisco basada en microdisección de fibras y demostración a través de tractografía" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "275" "paginaFinal" => "295" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "3D microsurgical anatomy of the cortico-spinal tract and lemniscal pathway based on fiber microdissection and demonstration with tractography" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0045" "etiqueta" => "Figura 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 2806 "Ancho" => 3000 "Tamanyo" => 973028 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0120" class="elsevierStyleSimplePara elsevierViewall">A-D)<span class="elsevierStyleHsp" style=""></span>Principales zonas de entrada al troncoencéfalo. Las abreviaciones con letras en color blanco hacen referencia a surcos y cisuras.</p> <p id="spar0047" class="elsevierStyleSimplePara elsevierViewall">aic: área infracolicular; aif: área infrafacial; apt: área peritrigeminal; asc: área supracolicular; asf: área suprafacial; av: área vestibular; bcoi: brazo del colículo inferior; br: bulbo raquídeo; cer: cerebelo; cf: colículo facial; cgl: cuerpo geniculado lateral; cgm: cuerpo geniculado medial; coi: colículo inferior; gp: glándula pineal; lcu: lobulillo cuadrangular; lel: lemnisco lateral; nd: núcleo dentado; pc: pedúnculo cerebral; pci: pedúnculo cerebeloso inferior; pcm: pedúnculo cerebeloso medio; pcs: pedúnculo cerebeloso superior; pi: pirámide bulbar; pro: protuberancia; pt: pulvinar del tálamo; rl: receso lateral; sip: surco intermedio posterior; sm: surco mediano; sml: surco mesencefálico lateral; smp: surco mediano posterior; spl: surco posterolateral; tc: tubérculo cuneiforme; td: tubérculo dentado; tg: tubérculo grácil; thip: trígono del hipogloso; tva: trígono del vago; ver: vermis; vs: velo medular superior.</p> <p id="spar0130" class="elsevierStyleSimplePara elsevierViewall">III: nervio oculomotor; IX: nervio glosofaríngeo; X: nervio vago; XI: raíz craneal del nervio accesorio.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Ruben Rodríguez-Mena, José Piquer-Belloch, José Luis Llácer-Ortega, Pedro Riesgo-Suárez, Vicente Rovira-Lillo" "autores" => array:5 [ 0 => array:2 [ "nombre" => "Ruben" "apellidos" => "Rodríguez-Mena" ] 1 => array:2 [ "nombre" => "José" "apellidos" => "Piquer-Belloch" ] 2 => array:2 [ "nombre" => "José Luis" "apellidos" => "Llácer-Ortega" ] 3 => array:2 [ "nombre" => "Pedro" "apellidos" => "Riesgo-Suárez" ] 4 => array:2 [ "nombre" => "Vicente" "apellidos" => "Rovira-Lillo" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2529849618300352" "doi" => "10.1016/j.neucie.2018.09.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529849618300352?idApp=UINPBA00004B" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S113014731830068X?idApp=UINPBA00004B" "url" => "/11301473/0000002900000006/v1_201810280605/S113014731830068X/v1_201810280605/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2529849618300315" "issn" => "25298496" "doi" => "10.1016/j.neucie.2018.07.003" "estado" => "S300" "fechaPublicacion" => "2018-11-01" "aid" => "336" "copyright" => "Sociedad Española de Neurocirugía" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurocirugia. 2018;29:296-303" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Clinical Research</span>" "titulo" => "Ablative stereotactic neurosurgery for irreducible neuroaggressive disorder in pediatric patients" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "296" "paginaFinal" => "303" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Neurocirugía estereotáctica ablativa para trastorno neuroagresivo irreductible en pediátricos" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1428 "Ancho" => 1200 "Tamanyo" => 168972 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Patient number 4: postoperative image of the frontal operculum and sylvian aqueduct showing a circumscribed hyperintense image in the basolateral region of the amygdaloid nuclear complex.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Manuel Hernández Salazar, Antonio Zarate Méndez, Oscar Meneses Luna, Lucía Ledesma Torres, Ramón Paniagua Sierra, Mary Carmen Sánchez Moreno, Juan Leonardo Serrato Avila" "autores" => array:7 [ 0 => array:2 [ "nombre" => "Manuel" "apellidos" => "Hernández Salazar" ] 1 => array:2 [ "nombre" => "Antonio" "apellidos" => "Zarate Méndez" ] 2 => array:2 [ "nombre" => "Oscar" "apellidos" => "Meneses Luna" ] 3 => array:2 [ "nombre" => "Lucía" "apellidos" => "Ledesma Torres" ] 4 => array:2 [ "nombre" => "Ramón" "apellidos" => "Paniagua Sierra" ] 5 => array:2 [ "nombre" => "Mary Carmen" "apellidos" => "Sánchez Moreno" ] 6 => array:2 [ "nombre" => "Juan Leonardo" "apellidos" => "Serrato Avila" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S1130147318300502" "doi" => "10.1016/j.neucir.2018.05.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1130147318300502?idApp=UINPBA00004B" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529849618300315?idApp=UINPBA00004B" "url" => "/25298496/0000002900000006/v1_201810280620/S2529849618300315/v1_201810280620/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2529849618300364" "issn" => "25298496" "doi" => "10.1016/j.neucie.2018.09.002" "estado" => "S300" "fechaPublicacion" => "2018-11-01" "aid" => "344" "copyright" => "Sociedad Española de Neurocirugía" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Neurocirugia. 2018;29:267-74" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Clinical Research</span>" "titulo" => "Clinical results and costs of endovascular treatment in comparison with surgery in non ruptured aneurysms" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "267" "paginaFinal" => "274" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Resultados clínicos y de costes del tratamiento endovascular frente al quirúrgico en aneurismas incidentales" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1425 "Ancho" => 2138 "Tamanyo" => 173313 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Mean costs.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Angel Horcajadas, Isabel Ortiz, Ana M. Jorques, Majed J. Katati" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Angel" "apellidos" => "Horcajadas" ] 1 => array:2 [ "nombre" => "Isabel" "apellidos" => "Ortiz" ] 2 => array:2 [ "nombre" => "Ana M." "apellidos" => "Jorques" ] 3 => array:2 [ "nombre" => "Majed J." "apellidos" => "Katati" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S1130147318300691" "doi" => "10.1016/j.neucir.2018.07.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1130147318300691?idApp=UINPBA00004B" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529849618300364?idApp=UINPBA00004B" "url" => "/25298496/0000002900000006/v1_201810280620/S2529849618300364/v1_201810280620/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Clinical Research</span>" "titulo" => "3D microsurgical anatomy of the cortico-spinal tract and lemniscal pathway based on fibre microdissection and demonstration with tractography" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "275" "paginaFinal" => "295" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Ruben Rodríguez-Mena, José Piquer-Belloch, José Luis Llácer-Ortega, Pedro Riesgo-Suárez, Vicente Rovira-Lillo" "autores" => array:5 [ 0 => array:4 [ "nombre" => "Ruben" "apellidos" => "Rodríguez-Mena" "email" => array:2 [ 0 => "rurodriguez@hospital-ribera.com" 1 => "ruben.rod@gmail.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:2 [ "nombre" => "José" "apellidos" => "Piquer-Belloch" ] 2 => array:2 [ "nombre" => "José Luis" "apellidos" => "Llácer-Ortega" ] 3 => array:2 [ "nombre" => "Pedro" "apellidos" => "Riesgo-Suárez" ] 4 => array:2 [ "nombre" => "Vicente" "apellidos" => "Rovira-Lillo" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Cátedra de Neurociencias – Fundación NISA, CEU Hospital Universitario de la Ribera, Alzira, Valencia, Spain" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Anatomía microquirúrgica en 3 D del tracto corticoespinal y de la vía del lemnisco basada en microdisección de fibras y demostración a través de tractografía" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2189 "Ancho" => 4200 "Tamanyo" => 1419475 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">(A and B) Dissection of the cerebral peduncle and basilar part of the pons reveals the substantia nigra and sensory fibres that occupy the anterior surface of the pontine tegmentum and include the medial lemniscus, lateral spinothalamic tract and lateral lemniscus. (C) On continuing the dissection of the lateral and deep fibres of the medullary pyramid, the relationship between the organisation and arrangement of the corticospinal and lemniscal fibres is seen along their entire trajectory in the brainstem. (D and E) On a different specimen, after the dissection of all the fibres of the medullary pyramid, the basilar part of the pons and the cerebral peduncle, the main medial and lateral lemniscal fibres and spinothalamic tract are observed. (F and G) After dissecting the internal capsule, the lateral surface of the thalamus is exposed, with its main thalamocortical radiations. H and <span class="elsevierStyleSmallCaps">I</span> correspond to images C and E in 3D, respectively.</p> <p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">ac: anterior commissure; cc: corpus callosum; cn: caudate nucleus; cp: cerebral peduncle; cst: corticospinal tract; dn: dentate nucleus; dscp: decussation of the superior cerebellar peduncles; fl: frontal lobe; flo: flocculus; ic: inferior colliculus; icp: inferior cerebellar peduncle; lgb: lateral geniculate body; lle; lateral lemniscus; mb: mammillary body; mcp: middle cerebellar peduncle; mle: medial lemniscus; na: nucleus accumbens; ol: olive of the medulla oblongata; pon: pons; py: medullary pyramid; scp: superior cerebellar peduncle; sn: substantia nigra; t: thalamus; tl: temporal lobule; tp-a: anterior thalamic peduncle; tp-p: posterior thalamic peduncle; tp-s: superior thalamic peduncle; ver: cerebellar vermis.</p> <p id="spar0085" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSmallCaps">II</span>: optic nerve; <span class="elsevierStyleSmallCaps">III</span>: oculomotor nerve; <span class="elsevierStyleSmallCaps">V</span>: trigeminal nerve; <span class="elsevierStyleSmallCaps">VII</span>: facial nerve; <span class="elsevierStyleSmallCaps">IX</span>-<span class="elsevierStyleSmallCaps">X</span>: glossopharyngeal and vagus nerves.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The white matter tracts of the brain are classified into three groups: association, commissural and projection tracts. Association fibres interlink various cortical regions within the same cerebral hemisphere and may be long or short, with long association tracts such as the superior longitudinal (including the arcuate fasciculus), uncinate and occipitofrontal fasciculus being especially noteworthy at the lateral aspect of the cerebral hemisphere. Commissural fibres traverse the midline and connect corresponding regions in both cerebral hemispheres. The corpus callosum and anterior commissure are particularly prominent. Projection fibres connect the cerebral cortex to the brainstem and spinal cord, forming fibre radiations such as the corona radiata, and arranging themselves more compactly near the superior part of the stem as an internal capsule, medial to the lentiform nucleus and lateral to the caudate nucleus and thalamus. Among the primary efferent projection tracts is the corticospinal system, which descends from superior cortical centres and traverses the brainstem, with the majority of its fibres decussating in the inferior third of the medulla oblongata until they reach the spinal cord. Meanwhile, the largest afferent tracts, which ascend through the brainstem to the thalamus (the central nervous system's main sensory relay station), include the medial lemniscus and spinothalamic tract.<a class="elsevierStyleCrossRefs" href="#bib0505"><span class="elsevierStyleSup">1–4</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Histological staining techniques applied to anatomical study have improved understanding of the organisation of white matter, particularly in the brainstem. However, the fibre dissection technique, reported widely in the literature,<a class="elsevierStyleCrossRefs" href="#bib0525"><span class="elsevierStyleSup">5–14</span></a> constitutes the best method to acquire accurate and precise knowledge of the inner structures of the brain and brainstem from a surgical perspective.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Moreover, the introduction of the diffusion tensor imaging (DTI) technique, based on magnetic resonance imaging (MRI),<a class="elsevierStyleCrossRefs" href="#bib0575"><span class="elsevierStyleSup">15,16</span></a> has enabled identification <span class="elsevierStyleItalic">in vivo</span> since their first studies of some details of the organisation of the main white matter nerve pathways in human beings, in both healthy and diseased brains.<a class="elsevierStyleCrossRefs" href="#bib0585"><span class="elsevierStyleSup">17–19</span></a> Thus, the advent and growth of diffusion tensor tractography (DTT)<a class="elsevierStyleCrossRefs" href="#bib0600"><span class="elsevierStyleSup">20,21</span></a> alongside the development of increasingly sophisticated imaging techniques and mathematical models in recent decades, have enabled individual delineation and assessment <span class="elsevierStyleItalic">in vivo</span> of the main white matter tracts, making it a useful tool within the neuroscientific field, including in the clinical practice of neurosurgery.<a class="elsevierStyleCrossRefs" href="#bib0610"><span class="elsevierStyleSup">22–37</span></a></p><p id="par0020" class="elsevierStylePara elsevierViewall">All this has motivated the conduct of an essentially anatomical laboratory study using the nerve fibre microdissection technique in order to demonstrate the organisation of the main tracts in the lateral aspect of the cerebral hemisphere and brainstem, with special emphasis on the topography and relationships of the corticospinal and medial lemniscus pathway (representing the pyramidal motor and sensory systems) and exposing their trajectories and relationships with the other white matter structures and grey matter nuclei, supplemented with the demonstration of these systems by means of MRI DTT performed in healthy subjects.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Material and methods</span><p id="par0025" class="elsevierStylePara elsevierViewall">The anatomical study was conducted in the neuroanatomy laboratories of Yeditepe University Hospital (Istanbul, Turkey) and Hospital Universitario de la Ribera (Alzira, Spain), where 10 cerebral hemispheres and 15 human brainstems were studied and dissected using the fibre dissection technique reported widely in the literature.<a class="elsevierStyleCrossRefs" href="#bib0550"><span class="elsevierStyleSup">10–14,38</span></a> To do this, the specimens were removed from the cranial cavity, stripped of dura mater and placed in a 10% formaldehyde solution for at least two months. After that, they were carefully stripped of pia mater, arachnoid mater and blood vessels. Next, the specimens were frozen at −10 to −15<span class="elsevierStyleHsp" style=""></span>°<span class="elsevierStyleSmallCaps">C</span> for 7–10 days. Thereafter, they were submerged in water until they thawed (2–3<span class="elsevierStyleHsp" style=""></span>h) and, at that point, they were ready for anatomical dissection. They were preserved during the dissection process in a 5% formaldehyde solution. Axial anatomical slices were performed on three human cadaver head specimens to determine the arrangement of the corticospinal tract and medial lemniscus at different levels. Bundles of white matter were then systematically microdissected using microscopic vision (6–40×) and the following instruments: scalpel with 15- and 11-mm blades, microsurgery scissors, microdissection forceps of different sizes, fine aspirators and, on occasion, fine-pointed wooden spatulas (<1-mm thick and 3-mm wide), in order to progressively follow the anatomical planes and detail and identify even the thinnest fibres.</p><p id="par0030" class="elsevierStylePara elsevierViewall">Dissection began at the lateral aspect of the cerebral hemisphere, from the most superficial to the deepest structures, taking the precentral gyrus as a cortical anatomical reference representing the motor projections, and the postcentral gyrus as a reference for somatosensory projections, in order to expose and follow the main projection fibres of said cortical regions and their continuation towards and/or from the brainstem. For that reason, the dissection ended at the lateral aspect of the midbrain, pons and medulla oblongata, with the ultimate aim of displaying and illustrating the trajectory and main relationships of the corticospinal tract and medial lemniscus together. During the different steps, each specimen was photographed using a Nikon D3000 camera (with an AF-S VR Micro-Nikkor 105-mm f/2.8 G IF-ED lens), Nikon Corp, Sendai, Japan, and two free wireless flashes. A tripod with a built-in pan and tilt head was also used to perform two captures of the same image from two different perspectives and thus prepare three-dimensional images. The images were fused in an anaglyph to create three-dimensional photographs using the software programme Adobe Photoshop CS6 version 13.0<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>64 for Macintosh.</p><p id="par0035" class="elsevierStylePara elsevierViewall">The second part consisted of a radiological study with DTT images obtained from brain MRIs performed with a 1.5-Tesla Philips Achieva device on 15 healthy subjects (as approved by the Hospital Universitario de La Ribera Scientific Ethics Committee). The fasciculi chosen in tractography were traced with enhanced diffusion sequences using DTV.<span class="elsevierStyleSmallCaps">II</span> SR toolbox software (Hospital Universitario de la Ribera Radiology Department). This allowed tractographies with 30 directions (<span class="elsevierStyleItalic">b</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>1000; voxel<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>mm) to be prepared. The DTI sequences were carried out with a single-shot spin echo planar technique, with a repetition time (RT)/echo time (ET) of 10,100/102<span class="elsevierStyleHsp" style=""></span>ms; visual field of 250<span class="elsevierStyleHsp" style=""></span>mm; resolution of 2<span class="elsevierStyleHsp" style=""></span>mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>mm; slice thickness of 2.0<span class="elsevierStyleHsp" style=""></span>mm; matrix of 128<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>128; continuous axial slices of 70; and voxel of 1.95<span class="elsevierStyleHsp" style=""></span>mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>1.95<span class="elsevierStyleHsp" style=""></span>mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>2<span class="elsevierStyleHsp" style=""></span>mm. The technique based on the selection of regions of interest (ROIs) reported by Catani et al.<a class="elsevierStyleCrossRef" href="#bib0605"><span class="elsevierStyleSup">21</span></a> was applied. This was essentially guided by classic anatomy books<a class="elsevierStyleCrossRefs" href="#bib0505"><span class="elsevierStyleSup">1–4,39,40</span></a> and the knowledge obtained while working in the anatomical laboratory. Thus, three-dimensional volumes of the white matter fasciculi of the corticospinal tract and medial lemniscus were created.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Results</span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Anatomy and dissection of the lateral surface of the cerebral hemisphere and corticospinal tract</span><p id="par0040" class="elsevierStylePara elsevierViewall">The central lobule of the cerebral hemisphere was identified first, with the precise location of the central sulcus, precentral gyrus (primary motor area) and the postcentral gyrus (primary somatosensory area). To do this, the cingulate sulcus at the medial aspect of the hemisphere was followed, assuming that the marginal sulcus or ascending ramus thereof continues at the lateral aspect of the cerebral hemisphere with the postcentral sulcus, thereby locating, from back to front, the postcentral gyrus, central sulcus and precentral gyrus (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>A).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0045" class="elsevierStylePara elsevierViewall">Following the recommendations of Türe et al.,<a class="elsevierStyleCrossRef" href="#bib0560"><span class="elsevierStyleSup">12</span></a> dissection at the lateral surface was started in a progressive manner, extracting the cerebral cortex, arcuate fibres and superior longitudinal fasciculus. Subsequently, following the dissection of the insular cortex, the uncinate and occipitofrontal fasciculi were observed, as well as the putamen (outermost part of the lentiform nucleus), the spongy consistency of which enabled it to be carefully aspirated to reveal the globus pallidus (firmer consistency), with internal capsule fibres arranged at the periphery, in continuity with the corona radiata. Remarkable skill and patience were required to dissect the most basal portion of the lentiform nucleus and thus avoid damage to the underlying anterior commissure. Certain fibres belonging to the lateral extension of the anterior commissure join those of the uncinate fasciculus to extend towards the temporal pole, while the majority follow a posterior course, just below the fibres of the occipitofrontal fasciculus, to join the sagittal stratum (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>B and <span class="elsevierStyleSmallCaps">I</span>). Three different layers – the occipitofrontal fasciculus in the lateral position, the anterior commissure in the middle and the sublentiform portion of the internal capsule medially – intersect to form the dense layer constituted by the sagittal stratum. This compact layer thus contains association, commissural and projection fibres, extending over the temporal horn, the atrium and the occipital horn of the lateral ventricle to reach the temporo-occipital region.<a class="elsevierStyleCrossRefs" href="#bib0550"><span class="elsevierStyleSup">10,12,41,42</span></a> The anterior commissure was then severed and its lateral extension removed to expose the fibres emerging from the sublentiform portion of the internal capsule, joining the sagittal stratum. This projection fibre system is formed from the temporopontine fibres, occipitopontine fibres and corticothalamic and thalamocortical fibres of the inferior and posterior thalamic peduncles (which contains optic radiations).<a class="elsevierStyleCrossRefs" href="#bib0560"><span class="elsevierStyleSup">12,27,42,43</span></a> The internal capsule deserves special mention, as the main network of projection fibres interposed between the lentiform nucleus (laterally) and caudate nucleus (medially), the shape of which will be defined according to the plane from which it is examined. The characteristic and classic <span class="elsevierStyleSmallCaps">V</span> shape, with an anterior and posterior limb separated by a genu flexure, is best defined in axial slices of the brain. However, from the lateral surface of the cerebral hemisphere, the internal capsule unfolds in the shape of an incomplete ellipsoid with a concave surface, corresponding to the imprint of the lentiform nucleus. It is separated into an anterior limb, between the lentiform nucleus and caudate nucleus, and a posterior limb, between the thalamus and lentiform nucleus. This posterior limb is more complex and can be subdivided into the lenticulothalamic, retrolentiform and sublentiform portions. The dissections have shown that the components of all these internal capsule portions diverge and radiate extensively to continue with the corona radiata, which was completely exposed on removing the remainder of the superior longitudinal fasciculus. Thus, the corona radiata includes all of the projection fibres that gather in the internal capsule and which intersect inside the corona radiata with callosal fibres (commissural-type) as well as some superior longitudinal fasciculus fibres (long association) on the route from and towards the corresponding cortical areas<a class="elsevierStyleCrossRefs" href="#bib0510"><span class="elsevierStyleSup">2,3,44</span></a> (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>C).</p><p id="par0050" class="elsevierStylePara elsevierViewall">The next step involved dissecting the basal surface of the cerebral hemisphere, resecting the amygdala, hippocampal formation, inferior thalamic peduncle, temporopontine fibres with the anterior extension of the tapetum fibres of the corpus callosum, as well as part of the posterior thalamic peduncle fibres. Immediately thereafter, the continuation of the internal capsule fibres was observed, gathering caudally to form the cerebral peduncle in the anterior portion of the midbrain. The optic tract extends towards the lateral geniculate body surrounding the cerebral peduncle; the sulcus between the optic tract and cerebral peduncle marks the superior limit of the brainstem with the diencephalon (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>D).</p><p id="par0055" class="elsevierStylePara elsevierViewall">With the objective of demonstrating the continuity of the cerebral peduncle fibres through the pons and medulla oblongata, dissection of the transverse pontine fibres continued from the pontomesencephalic sulcus. This enabled determination of how the compact fibre bundles that constitute the cerebral peduncle as they extend along the pons, interdigitate with the transverse pontine fibres connecting the pontine nuclei to the middle cerebellar peduncle. In the cerebral peduncle, the fibres that constitute the frontopontine tract are located in the anterior and medial third and the corticospinal and corticobulbar fibres (pyramidal tract) in the middle third, while the parietotemporopontine and occipitopontine tracts are located in the lateral and posterior third. The corticospinal tract divides longitudinally into various fibre bundles as it passes through the pons to then reconverge and form the pyramids at the anterior surface of the medulla oblongata. On their descent along the brainstem, corticobulbar fibres separate from the corticospinal tract to decussate at various levels and reach the cranial nerve motor nuclei of the midbrain tegmentum, pontine tegmentum and medulla oblongata. Nevertheless, accurately identifying the corticobulbar fibres was not possible since they are very thin fasciculi that progressively divide and decussate along the brainstem. The frontopontine, parietotemporopontine and occipitopontine tracts (corticopontine fibres) descend until they synapse with the pontine nuclei inside the basilar part of the pons to continue as fibres that primarily join the contralateral middle cerebellar peduncle, forming a connection between the cerebral cortex and contralateral cerebellum.<a class="elsevierStyleCrossRefs" href="#bib0510"><span class="elsevierStyleSup">2,3,39</span></a> When the ipsilateral optic tract surrounding the cerebral peduncle was severed and removed, the continuity of the internal capsule fibres towards the pes pedunculi was revealed. At this point, dissection of the lateral aspect of the cerebral hemisphere and brainstem enables the observation of the fibres’ trajectory from the cerebral cortex, corona radiata, internal capsule, cerebral peduncle, longitudinal fibres of the corticospinal tract in the basilar part of the pons, to the medulla oblongata pyramids (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>E and J). Anterior to the precentral sulcus, the cerebral cortex was then resected, alongside the corona radiata and the rest of the frontal subcortical white matter to expose the head and part of the body of the caudate nucleus, medial to the internal capsule (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>F). The remaining extensions of the internal capsule's posterior limb were then dissected towards the cerebral cortex, including the retrolentiform and sublentiform portions, exposing the remainder of the caudate nucleus body at the periphery medial to the internal capsule (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>G and K).</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Anatomy and dissection of the anterolateral surface of the brainstem and superior surface of the cerebellar hemisphere</span><p id="par0060" class="elsevierStylePara elsevierViewall">Dissection of the superior surface and lateral edge of the cerebellar hemisphere, as described in a previous publication by our group,<a class="elsevierStyleCrossRef" href="#bib0725"><span class="elsevierStyleSup">45</span></a> enables observation of the arrangement of the inferior, middle and superior cerebellar peduncles and dentate nucleus, prior to the lateral dissection of the midbrain tegmentum.</p><p id="par0065" class="elsevierStylePara elsevierViewall">At the lateral surface of the midbrain tegmentum, a thin and superficial layer of fibres forming the tectospinal tract was identified behind the lateral mesencephalic sulcus and anterior to the fibres of the superior cerebellar peduncle. The tectospinal tract is an efferent bundle from the superior colliculus that descends and continues towards the pontine tegmentum. When this tract was removed, a group of fibres was exposed ascending obliquely, superficially and ventrally to the fibres of the superior cerebellar peduncle, some of which reach the ipsilateral inferior colliculus, with others continuing below the brachium of the inferior colliculus. These fibres, from posterior and medial to anterior and lateral, correspond to the lateral lemniscus, the spinothalamic tract and some fibres from the dorsolateral portion of the medial lemniscus, in the most superficial part of their trajectories through the brainstem (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>A). It was not possible to show the exact limits between these tracts using the microdissection technique, which behave like a group of fibres with a similar calibre and trajectory in the lateral part of the midbrain tegmentum. The lateral lemniscus terminates in the ipsilateral inferior colliculus, while the spinothalamic tract and the medial lemniscus turn dorsally and ascend in the depth of the brachium of the inferior colliculus towards their final destinations in the dorsal thalamus.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0070" class="elsevierStylePara elsevierViewall">Extensive dissection of the cortico-subcortical cerebral structures of the contralateral hemisphere enabled the observation of the caudate nucleus and contralateral thalamus, as well as better identification of the other half of the brainstem and cerebellum (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>).</p><p id="par0075" class="elsevierStylePara elsevierViewall">Dissection continued at the brainstem level in a craniocaudal direction, resecting the two lateral thirds of the cerebral peduncle to expose the substantia nigra, a pigmented band that constitutes the largest nuclear mass in the midbrain, located between the cerebral peduncle and midbrain tegmentum, the most rostral part of which extends towards the diencephalon. The medial lemniscus and spinothalamic tract are situated behind the substantia nigra, in the lateral part of the tegmentum, displaced by the decussation of the superior cerebellar peduncle fibres that surround and traverse the red nucleus.</p><p id="par0080" class="elsevierStylePara elsevierViewall">Underneath the pontomesencephalic sulcus, after dissecting the central and lateral portions of the longitudinal fibre bundles in the basilar part of the pons (corresponding to corticospinal, corticopontine and corticobulbar fibres), as well as the respective transverse pontine fibres, the anterior surface of the pontine tegmentum was exposed, with its characteristic concave appearance in an anterior direction. At this level, the white matter organisation is more complex. In the inferior portion, above where the facial and vestibulocochlear nerves emerge, the medial lemniscus ascends parallel and next to the midline, before adopting a curvilinear trajectory in a lateral and oblique direction, similar to an arch. This orientation is seen more clearly at the emergence of the trigeminal nerve, where it in turn shares a close relationship on its lateral margin with spinothalamic tract fibres and the beginning of the lateral lemniscus, in the ventrolateral portion of the pontine tegmentum. Together, they form a peripheral covering of fibres that follow a dorsolateral direction, surrounding the pontine tegmentum, before they ascend and cover the ipsilateral superior cerebellar peduncle as they pass through the midbrain tegmentum.<a class="elsevierStyleCrossRefs" href="#bib0505"><span class="elsevierStyleSup">1,3,39</span></a> The fibre microdissection technique did not enable precise delimitation of the medial lemniscus fibres of other contiguous tracts in the inferior portions of the pons, such as the central tegmental tract and trapezoid body (the fibres of which will give rise to the lateral lemniscus), nor did it delineate the limits between the medial lemniscus, spinothalamic tract and lateral lemniscus in the superior portion of the pons. Dissection of the deepest transverse pontine fibres and middle cerebellar peduncle revealed the path of the trigeminal nerve, located anterior to the inferior cerebellar peduncle and posterior and lateral to the medial and lateral lemnisci, as it heads towards its respective primary motor and sensory nuclei in the pontine tegmentum (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>A and B).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0085" class="elsevierStylePara elsevierViewall">Dissection continued at the anterior surface of the medulla oblongata, where the inferior limit of the olive of the medulla oblongata and preolivary sulcus was used as a reference to dissect the lateral and deep fibres of the medullary pyramid to the height of the pontomedullary sulcus, in order to reveal the first portion of the medial lemniscus following the decussation of internal arcuate fibres in the medulla. High microscope magnification enabled visualisation of the dorsal limit between the pyramids and medial lemniscus, revealing the difference between both groups of fibres. The fibres composing the medullary pyramid were mostly small in nature, with thicker mixed fibres, while those of the medial lemniscus were medium-sized and uniform. The efferent fibres of the olive traverse the medial lemniscus to join the contralateral inferior cerebellar peduncle and extend towards the cerebellum as olivocerebellar fibres.<a class="elsevierStyleCrossRefs" href="#bib0505"><span class="elsevierStyleSup">1–3,39</span></a> At this point in the dissection, the relationship between the organisation and arrangement of the corticospinal and medial lemniscal fibres is seen along their entire trajectory in the brainstem (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>C and H). The rest of the medullary pyramid was then resected from the inferior limit of the olive in an ascending direction, continuing at the pons level with the remaining corticospinal fibres, as well as the most medial portion of the cerebellar peduncle (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>D, E, and <span class="elsevierStyleSmallCaps">I</span>). The internal capsule fibres were also dissected, with the lateral surface of the thalamus proven to form part of the lateral wall of the third ventricle. On dissecting the brachium of the inferior colliculus, the rostral continuation of the medial lemniscus was observed, dorsomedial to the medial geniculate body of the thalamus, extending towards its final destination in the posterolateral ventral nucleus of the thalamus. In this region, the presence of interspersed pallidoreticular, nigrostriatal and superior cerebellar peduncle fibres made it impossible to identify the terminal fibres of the medial lemniscus and spinothalamic tract. Dissection around the thalamus revealed the thalamocortical fibres that make up the anterior, superior and posterior thalamic peduncles (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>F and G). These fibres, which emerge from the grey matter of the thalamus, are arranged medially to the long corticofugal projection pathway that descends from cerebral cortex regions, diverging from the most medial portion of the internal capsule's anterior and posterior limbs to form a connection between the thalamus and cerebral cortex (frontal, central, parietal and occipitotemporal areas).<a class="elsevierStyleCrossRefs" href="#bib0515"><span class="elsevierStyleSup">3,46</span></a></p><p id="par0090" class="elsevierStylePara elsevierViewall">Distinguishing between tracts studied with macroscopic or even microscopic vision on axial or coronal slices of real specimens is challenging for any investigator in the neuroanatomy field. However, the knowledge acquired in the fibre microdissection stage has provided a unique and in-depth perspective for determining the location of the corticospinal tract and medial lemniscus (as well as other fibre systems and nearby nuclei) with greater precision when examining slices of cadaver head and brainstem specimens produced in the laboratory, serving as a basis that advanced the understanding of brain MRI DTI maps and ultimately their reproduction using tractography (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>).</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">DTT of the corticospinal tract and lemniscal pathway</span><p id="par0095" class="elsevierStylePara elsevierViewall">A better and clear perception of the three-dimensional arrangement of the projection bundles at the lateral aspect of the cerebral hemisphere and brainstem, acquired through the microdissections performed, was the fundamental pillar for identifying them properly when studying brain MRI DTI axial sequences. This enabled more rigorous selection of the corresponding ROIs during tracking on the colour DTI map, specifically choosing zones with the greatest anatomical distinction and delineation of each tract during their trajectory. Reproduction and subsequent triplanar demonstration through tractography images of the corticospinal tract and medial lemniscal pathway were therefore achieved, thereby providing supplementary qualitative and descriptive information to the anatomical laboratory study.</p><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Corticospinal tract</span><p id="par0100" class="elsevierStylePara elsevierViewall">For the initial tracking of the corticospinal tract, the projection fibres of the corona radiata were identified (in blue on the DTI colour map) and their descent was followed down the internal capsule's posterior limb, middle third of the cerebral peduncle, basilar part of the pons (where it is arranged as various closely-linked bundles with transverse fibres, in red), to the medullary pyramid (medial to the olive of the medulla oblongata), above the fibre decussation thereof.</p><p id="par0105" class="elsevierStylePara elsevierViewall">To reconstruct it, various ROIs were included that would enable the restriction of a large group of projection fibres running through the internal capsule and forming the tract. As such, the posterior limb of the internal capsule was selected at the cerebral hemisphere, as well as the middle third of the cerebral peduncle (a 7-mm<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>5-mm area in a transverse and anteroposterior direction, respectively) and, lastly, the longitudinal bundles located in the central part of the superior third of the basilar part of the pons, as recognised on the DTI map (2<span class="elsevierStyleHsp" style=""></span>mm above where the trigeminal nerve emerges). The results revealed the orientation of the corticospinal tract from the areas near the sensorimotor cortex to the medulla oblongata (<a class="elsevierStyleCrossRef" href="#fig0025">Fig. 5</a>), with the greatest number of fibres observed at levels below the centrum semiovale, an area known for confluence and thus the intersection of fibre bundles in different directions (projection, commissural and association), and where the successful reproduction of a single tract poses a huge technical challenge. This limitation was also seen in the microdissections performed, where the presence of corona radiata fibres, the superior longitudinal fasciculus and corpus callosum radiations hindered the accurate identification of corticospinal fibres.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Medial lemniscus and thalamocortical projections</span><p id="par0110" class="elsevierStylePara elsevierViewall">The ascent of the medial lemniscus was tracked on axial slices from the superior portion of the medulla oblongata, with the first ROI selected 3<span class="elsevierStyleHsp" style=""></span>mm medial to the lateral border of the olive, in a space of between 3 and 7<span class="elsevierStyleHsp" style=""></span>mm behind the anterior border of the medullary pyramid. The second ROI was chosen in the inferior portion of the pontine tegmentum, behind the most posterior transverse fibres of its basilar part (red on the DTI map), 4<span class="elsevierStyleHsp" style=""></span>mm ahead of the <span class="elsevierStyleSmallCaps">4</span>th ventricle floor and extending 4<span class="elsevierStyleHsp" style=""></span>mm lateral to the midline. In the midbrain, the third ROI was located in the anterolateral part of the tegmentum, behind the substantia nigra, occupying a 5-mm area between the red nucleus and lateral mesencephalic sulcus, where the fibres were arranged parallel to the anterolateral surface of the cerebral peduncle (the anterior border of which was 10<span class="elsevierStyleHsp" style=""></span>mm away). Thus, the tractography showed the trajectory of the medial lemniscus from the middle portion of the medulla oblongata, through the pons and midbrain, to the thalamus (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>A–D), as observed in the microdissections. Demonstrating the continuation of the somatosensory pathway through the thalamocortical projections towards the cerebral cortex required the selection of the third ROI mentioned above, where the medial lemniscus is located in the midbrain tegmentum, alongside another ROI in the internal capsule's posterior limb, enabling representation through tractography of the medial lemniscus from the pons to the thalamus, as well as its consequential continuation as superior thalamic peduncle fibres towards the sensorimotor cortex (<a class="elsevierStyleCrossRef" href="#fig0030">Fig. 6</a>E–G).</p><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0115" class="elsevierStylePara elsevierViewall">In tractography, the distinction between the corticospinal tract and medial lemniscus and the continuation of the thalamocortical pathway was clearer and more accurate lengthways along their trajectory in the brainstem, while higher up both tracts were closely interlinked, gathering in a similar fashion to in the internal capsule's posterior limb, primarily differentiated by the colour assigned to each of them (<a class="elsevierStyleCrossRef" href="#fig0035">Fig. 7</a>). In fibre microdissection, differentiating the descending bundles of the internal capsule and ascending thalamocortical bundles is facilitated through the systematic lateromedial technique from the surface of the insular cortex, as seen in the laboratory work. However, at this level it was not possible to accurately distinguish between those belonging to the corticospinal tract and those belonging to the medial lemniscal pathway.</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><p id="par0120" class="elsevierStylePara elsevierViewall">Finally, as in the case of the microdissections, separating the medial lemniscal fibres from those belonging to the spinothalamic tract was not possible <span class="elsevierStyleItalic">via</span> tractography, particularly at the level of the pons and midbrain, so these should be considered jointly as the ascending somatosensory pathway when interpreting the images reproduced by the DTI map.</p></span></span></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Discussion</span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Historical-anatomical review of the study of the corticospinal tract and medial lemniscus based on the fibre dissection</span><p id="par0125" class="elsevierStylePara elsevierViewall">In 1543, with the publication of <span class="elsevierStyleItalic">De Humani Corporis Fabrica</span>, Andrea Vesalius (1514–1564) depicted the internal capsule and midbrain, and in 1573 Costanzo Varolio (1543–1575) described the cerebral peduncle in detail, along with the pons Varolii (“Bridge of Varolius”) that bears his name.<a class="elsevierStyleCrossRef" href="#bib0735"><span class="elsevierStyleSup">47</span></a> Later, Thomas Willis (1621–1675) coined the term “medulla oblongata” to cover all deep white matter structures, the ventricles, basal ganglia, thalamus and brainstem.<a class="elsevierStyleCrossRef" href="#bib0740"><span class="elsevierStyleSup">48</span></a> In his atlas <span class="elsevierStyleItalic">Neurographia Universalis</span> (1685), Raymond Vieussens (1641–1715) provided the first descriptions of the pyramids and centrum semiovale. He also demonstrated the continuity of the corona radiata, internal capsule, cerebral peduncle and corticospinal tract fasciculi in the pons and medulla oblongata.<a class="elsevierStyleCrossRef" href="#bib0745"><span class="elsevierStyleSup">49</span></a> In 1802, Sir Charles Bell (1774–1842) published the first clear artistic illustration of a dissection of the corticospinal tract as it passes through the internal capsule towards the pyramidal decussation (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>A). However, it was Franz Joseph Gall (1758–1828) and his student Johann C. Spurzheim (1776–1832) who proposed the existence of projection systems of both afferent and efferent fibre tracts connecting the cerebral cortex to the subcortical areas, brainstem and spinal cord, and they also confirmed the pyramidal decussation with total certainty.<a class="elsevierStyleCrossRef" href="#bib0545"><span class="elsevierStyleSup">9</span></a></p><elsevierMultimedia ident="fig0040"></elsevierMultimedia><p id="par0130" class="elsevierStylePara elsevierViewall">Albrecht Von Haller (1708–1777)<a class="elsevierStyleCrossRef" href="#bib0750"><span class="elsevierStyleSup">50</span></a> first identified the fibre bundle corresponding to the medial lemniscus in the brainstem, but Johann Christian Reil was the first to describe and follow it along its trajectory in the pons and midbrain, hence why the medial lemniscus is also referred to as “Reil's band” in early literature.<a class="elsevierStyleCrossRef" href="#bib0755"><span class="elsevierStyleSup">51</span></a> The atlas published by Herbert Mayo (1796–1852) in 1827 provides the first illustrations that clearly and unmistakably portray the distinction between corticospinal fibres and the medial lemniscus in the brainstem (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>B).<a class="elsevierStyleCrossRef" href="#bib0555"><span class="elsevierStyleSup">11</span></a> These were later improved, in 1844, by Archille L. Foville (1799–1878), who provided admirable dissections and detailed demonstrations of cerebral fibres and the brainstem (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>C).<a class="elsevierStyleCrossRef" href="#bib0540"><span class="elsevierStyleSup">8</span></a></p><p id="par0135" class="elsevierStylePara elsevierViewall">The development of the microtome and histological staining techniques in turn opened the doors to more exhaustive descriptions of the nervous system's intrinsic anatomy, particularly the brainstem, in the form of axial, coronal and sagittal slices, which gradually helped to complete the knowledge that had been acquired to date, based on fibre dissection. Thus, for example, the investigations carried out by Von Bechterew (1895) and Paul Emil Flechsig (1847–1929),<a class="elsevierStyleCrossRef" href="#bib0760"><span class="elsevierStyleSup">52</span></a> and later Ludwig Edinger (1855–1918),<a class="elsevierStyleCrossRef" href="#bib0765"><span class="elsevierStyleSup">53</span></a> demonstrated the decussation of the lemnisci in the medulla oblongata, laying the foundations for the current consensus that most lemniscal fibres originate in the contralateral dorsal column of the spinal cord. Moreover, in the work by Von Bechterew and Flechsig, a subdivision is recognised in one medial and another lateral lemniscus, with the latter having been linked to the auditory system since around 1885.<a class="elsevierStyleCrossRef" href="#bib0760"><span class="elsevierStyleSup">52</span></a></p><p id="par0140" class="elsevierStylePara elsevierViewall">Later on, in the mid <span class="elsevierStyleSmallCaps">20th</span> century, Joseph Klingler (1888–1963) and his teacher, Ludwig, published their masterpiece, <span class="elsevierStyleItalic">Atlas Cerebri Humani</span>,<a class="elsevierStyleCrossRef" href="#bib0550"><span class="elsevierStyleSup">10</span></a> which depicts extensive and detailed dissections, including the continuation of projection fibres between the cerebral hemisphere and brainstem (<a class="elsevierStyleCrossRef" href="#fig0040">Fig. 8</a>D). Recently, with the development of the microscope, the technique has been salvaged and interest has been awakened in the study of fibre dissection,<a class="elsevierStyleCrossRefs" href="#bib0560"><span class="elsevierStyleSup">12,13</span></a> giving rise to important new investigations for a proper understanding of anatomical changes and behaviour in the presence of central nervous system disease, as well as for the interpretation of MRI scans and surgical planning.<a class="elsevierStyleCrossRefs" href="#bib0570"><span class="elsevierStyleSup">14,26,27,43,54–69</span></a></p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Anatomy of the surface of the brainstem and its relationship to the dissection of the corticospinal tract and medial lemniscus</span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Midbrain</span><p id="par0145" class="elsevierStylePara elsevierViewall">In the cerebral peduncle, the corticospinal tract (and corticobulbar fibres) is included in the ventral midbrain projection fibre group, located in the middle third, as observed in the dissections, while the remaining corticopontine fibres mainly occupy the anterior (medial) and posterior (lateral) thirds (<a class="elsevierStyleCrossRefs" href="#fig0010">Figs. 2 and 4E</a>). The lateral mesencephalic sulcus extends from the medial geniculate body superiorly to the pontomesencephalic sulcus inferiorly, constituting the superior posterior limit of the ventrolateral midbrain and separating the surface of the cerebral peduncle from that of the midbrain tegmentum. The quadrigeminal plate or tectum, with the superior and inferior colliculi nerves, is observed posteromedially to the lateral mesencephalic sulcus<a class="elsevierStyleCrossRefs" href="#bib0825"><span class="elsevierStyleSup">65,70</span></a> (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a>B and C).</p><elsevierMultimedia ident="fig0045"></elsevierMultimedia><p id="par0150" class="elsevierStylePara elsevierViewall">During the dissections, the cerebral peduncle was identified as the main system of compact projection fibres descending between the cerebral cortex and brainstem. The substantia nigra, dorsal to the peduncle, separates it from the midbrain tegmentum. In the latter, we observed the somatosensory fibres of the medial lemniscus and spinothalamic tract, which are arranged laterally and superficially to the decussation of the superior cerebellar peduncle fibres that surround and traverse the red nucleus, leaving the oculomotor and trochlear nerve nuclei deep within the tegmentum (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). At the posterolateral surface, the inferior colliculus gave rise to the brachium thereof, which extended towards the medial geniculate body of the thalamus, superficial to the fibres of the spinothalamic tract and medial lemniscus which ascend towards the dorsal thalamus, in close liaison with the highest portion of the lateral mesencephalic sulcus (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a>).</p><p id="par0155" class="elsevierStylePara elsevierViewall">Where the lateral lemniscus terminates in the inferior colliculus, the medial lemniscus and spinothalamic tract turn dorsally. Thus, the spinothalamic tract assumes a ventrolateral position to the superior colliculus,<a class="elsevierStyleCrossRef" href="#bib0515"><span class="elsevierStyleSup">3</span></a> which we were unable to discern during the fibre microdissection. Higher up in the superior colliculus, the spinothalamic and medial lemniscal fibres enter the dorsal thalamus in more of a rostral direction (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).</p><p id="par0160" class="elsevierStylePara elsevierViewall">Similarly to the findings of Ludwig and Klinger, fibre microdissection in the pontine and midbrain regions did not enable delimitation or separation of the fibres between the medial and lateral lemnisci, especially when we take into account the close relationship of the spinothalamic tract as it approaches the surface of the pontine tegmentum between both lemnisci. Nor did it demonstrate the termination of the medial lemniscal or spinothalamic tract fibres in the ventral posterolateral nucleus of the thalamus (mainly due to the presence of other groups of fibres, including those of the superior cerebellar peduncle).<a class="elsevierStyleCrossRef" href="#bib0845"><span class="elsevierStyleSup">69</span></a></p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Pons</span><p id="par0165" class="elsevierStylePara elsevierViewall">Two parts of the pons were identified: one ventral or basilar part and the dorsal pons, also known as the pontine tegmentum. The pontine nuclei are located along the ventral portion of the pons, giving rise to the transverse (pontocerebellar) fibres that intersect with longitudinal projection fibres: corticospinal, corticopontine and corticobulbar fibres. The anterior convexity of the basilar part of the pons maintains a relationship with the arrangement of the superficial and deep (transverse) pontocerebellar fibres, which are densely intertwined with the longitudinal pontine fibres and continue laterally to form the left and right middle cerebellar peduncles (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>). Through fibre dissection, we were able to observe how groups of transverse fibres were arranged in relation to the corticospinal fibres, with some being superficial and anterolateral, while others traversed the longitudinal bundles perpendicularly. Meanwhile, a smaller group was positioned posterior to the corticospinal fibres, as described by other authors.<a class="elsevierStyleCrossRef" href="#bib0835"><span class="elsevierStyleSup">67</span></a> Following the recommendations of Türe et al.,<a class="elsevierStyleCrossRef" href="#bib0560"><span class="elsevierStyleSup">12</span></a> the craniocaudal dissection of the corticospinal tract from the pontomesencephalic sulcus clearly demonstrated its subtle dispersal into bundles that occupy an anteromedial position in the pons before gathering again in the inferior part, near the pontomedullary junction, to form the medullary pyramids. Even with a meticulous microdissection technique, however, identifying and preserving the corticobulbar and corticopontine fibres was not possible on exposing the corticospinal fibres, due to these being mostly small bundles dispersed in the basilar part of the pons.<a class="elsevierStyleCrossRefs" href="#bib0505"><span class="elsevierStyleSup">1–3,39</span></a> At the lateral surface of the pons, the emergence of the trigeminal nerve serves as a reference for determining the limit between its ventral surface and the beginning of the ipsilateral middle cerebellar peduncle, formed by a cluster of transverse pontine fibres running obliquely (above and below the trigeminal nerve) and which continue to form part of the cerebellopontine angle floor and enter the cerebellum (<a class="elsevierStyleCrossRefs" href="#fig0005">Figs. 1 and 2</a>). Following the dissection of the middle cerebellar peduncle's superficial fibres at the apparent level of origin of the trigeminal nerve, a trajectory running through the deep transverse fibres towards the most posterior portion of the basilar part of the pons was distinguished, where the corticospinal fibres were located anteromedially, while the medial lemniscal fibres, spinothalamic tract and lateral lemniscus continued dorsally in the anterior concavity of the pontine tegmentum. The fibres of the trigeminal nerve are therefore located lateral and posterior to the lemniscal fibres, but medial and anterior to the inferior cerebellar peduncle (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).</p></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Medulla oblongata</span><p id="par0170" class="elsevierStylePara elsevierViewall">Separated by the anterior median sulcus, the medullary pyramids occupy the prominent anterior surface of the medulla oblongata and cover the corticospinal tracts on each side of the midline. In its inferior third, the anterior median sulcus is interrupted by fibre bundles crossing obliquely from one side to the other, constituting the pyramidal decussation (<a class="elsevierStyleCrossRefs" href="#fig0005">Figs. 1–4 and 9</a>). The fibres of the medial lemniscus are located longitudinally and paramedially behind the medullary pyramids. The olives of the medulla oblongata are separated from the pyramids by the preolivary or anterolateral sulcus (traversed by the fibres of the hypoglossal nerve) and are located laterally to the medial lemniscal fibres (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). The gracile fasciculi can be observed parallel to the midline, separated from one another by the posterior median sulcus, and laterally separated from the cuneate fasciculus by the posterior intermediate sulcus on each side. Both initially run in a vertical direction to diverge from the midline as they approach the rhomboid fossa, with each forming a prominence corresponding to the nuclei where their fibres terminate: the gracile and cuneate tubercles, respectively (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a>D). These nuclei will lead to internal arcuate fibres, which run in a curvilinear fashion around the grey matter of the medulla until they decussate in the anterior portion of the midline (great sensory decussation) to give rise to the medial lemniscus, a trajectory that was hard to recognise in the laboratory work, even using high-magnification microdissection – a difficulty that has also been observed in other publications.<a class="elsevierStyleCrossRefs" href="#bib0820"><span class="elsevierStyleSup">64,67,69</span></a></p></span></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Entry zones to the brainstem and their relationship to the corticospinal tract and medial lemniscus</span><p id="par0175" class="elsevierStylePara elsevierViewall">In the past three decades, advances in microsurgical techniques, neuroimaging and intraoperative neurophysiological monitoring have contributed to the development of surgery for the exeresis of brainstem lesions, changing the old paradigm whereby tumour disease in the region was generally considered “malignant behaviour” with a poor prognosis, and which was not eligible for any kind of surgical treatment in the majority of cases.<a class="elsevierStyleCrossRef" href="#bib0855"><span class="elsevierStyleSup">71</span></a> In this sense, interest in the in-depth anatomical study of the internal and external configuration of the brainstem has given rise to the definition of certain “safe entry zones” thereto, considered as such due to the fact that the critical neuronal structures are more widely dispersed and are not in contact with perforating vessels.<a class="elsevierStyleCrossRef" href="#bib0825"><span class="elsevierStyleSup">65</span></a> These zones have been specifically conceived to access a group of deep lesions that do not grow and which reach the surface of the brainstem. Thus, taking into account clinical practice and the foundations of anatomy, together with intraoperative ultrasonography, Kyoshima et al.<a class="elsevierStyleCrossRef" href="#bib0860"><span class="elsevierStyleSup">72</span></a> were pioneers in describing and proposing two entry zones into the brainstem <span class="elsevierStyleItalic">via</span> the floor of the 4th ventricle with the objective of resecting intrinsic lesions. Since then, various studies, largely based on histological and neurophysiological techniques,<a class="elsevierStyleCrossRefs" href="#bib0865"><span class="elsevierStyleSup">73–76</span></a> as well as on surface anatomy and fibre dissection techniques,<a class="elsevierStyleCrossRefs" href="#bib0825"><span class="elsevierStyleSup">65,67,77–80</span></a> have provided valuable information related to new anatomical corridors for exploring the depth of the brainstem, serving as a basis in this fibre microdissection study to describe the main relationships maintained by the corticospinal tract and medial lemniscus with the brainstem entry zones found closest to them:</p><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Midbrain</span><p id="par0180" class="elsevierStylePara elsevierViewall">Posterior approaches through the supra- and infracollicular areas (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a>) have only been described for accessing tectum lesions (located behind the cerebral aqueduct),<a class="elsevierStyleCrossRef" href="#bib0870"><span class="elsevierStyleSup">74</span></a> thereby leaving the main lemniscus bundles in front. Moreover, two zones in the anterolateral region are also worth highlighting:</p><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Lateral mesencephalic sulcus</span><p id="par0185" class="elsevierStylePara elsevierViewall">At the lateral surface of the brainstem, anterolateral to this sulcus, we find the cerebral peduncle, specifically its parietotemporopontine fibres, while the medial and lateral lemniscal fibres are located posteriorly and medially. Making a vertical incision in this sulcus provides a narrow anatomical corridor in the border between the ventral and dorsal portions of the midbrain, between the substantia nigra ventrally and the medial lemniscus dorsally, with the oculomotor nerve fibres deep down. The entry through the lateral mesencephalic sulcus thus runs between the main descending (including motor fibres) and ascending projection fibres (mainly the somatosensory fibres of the medial lemniscus and spinothalamic tract) (<a class="elsevierStyleCrossRefs" href="#fig0020">Figs. 4 and 9</a>). The decussation of the superior cerebellar peduncle is located posteriorly and medially in the midbrain tegmentum, at the height of the inferior colliculi. Other closely related grey matter structures in the tegmentum include the oculomotor and trochlear nerve nuclei, as well as the red nucleus.</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Perioculomotor zone</span><p id="par0190" class="elsevierStylePara elsevierViewall">The anatomical corridor of the perioculomotor zone runs between the cerebral peduncle laterally and the emergence of the oculomotor nerve medially. The medial third of the cerebral peduncle contains frontopontine fibres, while the middle third houses corticospinal and corticobulbar fibres. Inside the perioculomotor zone are the substantia nigra, the intramesencephalic fibres of the oculomotor nerve, and the red nucleus, alongside the ascending fibres of the superior cerebellar peduncle. In the midbrain tegmentum, on the other hand, the most medial fibres of the medial lemniscus are dorsal to the red nucleus, just posterior to the substantia nigra. Thus, lateral displacement along this entry zone should be avoided, which would lead to the main motor (corticospinal and corticobulbar) and sensory (medial lemniscus) projection pathways (<a class="elsevierStyleCrossRefs" href="#fig0015">Figs. 3 and 4E</a>).</p></span></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0155">Pons</span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0160">Peritrigeminal zone</span><p id="par0195" class="elsevierStylePara elsevierViewall">As dissection in this approach progresses in the anterolateral portion of the pons, the superficial and deep transverse pontocerebellar fibres are identified, medially to the corticospinal tract, which splits into various thick bundles that run longitudinally and are interrupted and interlaced with transverse fibres, with the emergence of the trigeminal nerve located laterally, as well as the origin of the middle cerebellar peduncle. In the depth of the limits of this approach, it was observed that the medial lemniscus fibres, spinothalamic tract and lateral lemniscus continue their ascending trajectory along the pontine tegmentum, medial to the trigeminal nerve fibres, leaving the uppermost fibres of the inferior cerebellar peduncle lateral to this entry zone (<a class="elsevierStyleCrossRefs" href="#fig0010">Figs. 2, 3 and 9</a>). There is also a close relationship with the main nuclei of the trigeminal, abducens, facial and vestibulocochlear nerves, as well as their intrapontine fibres, as we extend into the pontine tegmentum.<a class="elsevierStyleCrossRefs" href="#bib0825"><span class="elsevierStyleSup">65,67</span></a> This entry zone has been recommended for anterolateral lesions in the pons, <span class="elsevierStyleItalic">i.e.</span> lesions lateral to the corticospinal tract and anterior to the medial lemniscus. There are different opinions regarding which direction should be used to perform a myelotomy,<a class="elsevierStyleCrossRefs" href="#bib0905"><span class="elsevierStyleSup">81–83</span></a> but based on fibre microdissection findings, a horizontal myelotomy appears to be the most advisable, in an attempt to preserve the transverse pontocerebellar fibres at the base of the pons.<a class="elsevierStyleCrossRef" href="#bib0825"><span class="elsevierStyleSup">65</span></a> However, this comes with the warning that medial extension in the myelotomy, and subsequent dissection in this direction, lead to critical neural structures in the basilar part of the pons, such as the corticospinal tract.</p></span><span id="sec0105" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0165">Suprafacial approach</span><p id="par0200" class="elsevierStylePara elsevierViewall">Described as access zones leading into the pons through the floor of the 4th ventricle, taking the position of the facial colliculus as a reference. The suprafacial approach is limited rostrally by the frenulum veli (through which the trochlear nerve fibres pass), caudally by the superior intrapontine segment of the facial nerve at the upper margin of the facial colliculus, medially by the medial longitudinal fasciculus, and laterally by the sulcus limitans.<a class="elsevierStyleCrossRef" href="#bib0835"><span class="elsevierStyleSup">67</span></a> The medial lemniscus thus constitutes the anterior limit of the anatomical corridor, ahead of the corticospinal tract, and these relationships should be taken into account when considering this approach in deep dorsal lesions of the pons (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a>D).</p></span></span><span id="sec0110" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0170">Medulla oblongata</span><span id="sec0115" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0175">Anterolateral approaches</span><p id="par0205" class="elsevierStylePara elsevierViewall">Taking the medullary pyramids, olive of the medulla oblongata and the emergence of the lower cranial nerves as references, two approach zones have been described:<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">•</span><p id="par0210" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Anterolateral (preolivary) sulcus</span>. The corticospinal tract and its decussation are arranged longitudinally at the anterior surface of the medulla oblongata, medial to the preolivary sulcus. Posterior to the corticospinal tract, the medial lemniscus fibres and their decussation ascend parallel to the midline, separating the anterior and posterior portions of the medulla oblongata. Moreover, the fibres of the hypoglossal nerve are arranged medial to the olivary body, and the olivocerebellar fibres, which direct towards the midline to join the contralateral inferior cerebellar peduncle, are also at risk of injury due to the dissection of the preolivary sulcus (<a class="elsevierStyleCrossRefs" href="#fig0005">Figs. 1H, 2, 3, 4D</a>). Since these are highly functional structures, this entry zone should only be considered in exceptional cases of superficially-located lesions.<a class="elsevierStyleCrossRef" href="#bib0920"><span class="elsevierStyleSup">84</span></a></p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel"><span class="elsevierStyleItalic">•</span></span><p id="par0215" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Retro-olivary (posterolateral) sulcus.</span> The approach <span class="elsevierStyleItalic">via</span> this sulcus follows a trajectory between the olive of the medulla oblongata and the inferior cerebellar peduncle, just anterior to the roots of the vagus and glossopharyngeal nerves. In the depth of this corridor, the medial lemniscal fibres are arranged medially, while those of the spinothalamic tract are located anteriorly (<a class="elsevierStyleCrossRefs" href="#fig0005">Figs. 1H and 2</a>). Other structures found at the posterior limit are the anterior and posterior spinocerebellar and vestibulospinal tracts; and in the depth of the retro-olivary sulcus, the nucleus ambiguus.<a class="elsevierStyleCrossRefs" href="#bib0825"><span class="elsevierStyleSup">65,67</span></a></p></li></ul></p></span><span id="sec0120" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0180">Posterior approaches</span><p id="par0220" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic">Three approach</span> zones have been identified at the posterior surface of the medulla oblongata beneath the rhomboid fossa<a class="elsevierStyleCrossRef" href="#bib0870"><span class="elsevierStyleSup">74</span></a>: the posterior median sulcus, the posterior intermediate sulcus (between the gracile and cuneate fasciculi and tubercles) and the posterolateral sulcus (lateral to the cuneate tubercle and fasciculus). Of these, the posterior median sulcus is the most common, at the inferior surface of the medulla under the obex. These entry zones have a special relationship with the gracile and cuneate fasciculi and nuclei at the dorsal surface of the medulla, from where the internal arcuate fibres originate, which after decussating in the midline, will form the medial lemniscus. Thus, these anatomical corridors have an increased risk of affecting the main proprioceptive sensory structures completing their ascent from the posterior columns of the spinal cord (<a class="elsevierStyleCrossRef" href="#fig0045">Fig. 9</a>D).</p><p id="par0225" class="elsevierStylePara elsevierViewall">Anatomical and morphometric studies have provided a detailed microscopic identification and description of the surface anatomy and internal organisation of the brainstem's white and grey matter, giving exact measurements that enable the recommendation of different entry sites, directions and trajectories, as well as adequate distances to the target for which interior access is sought.<a class="elsevierStyleCrossRefs" href="#bib0825"><span class="elsevierStyleSup">65,67,72,75,77,85</span></a> However, the reality faced by surgeons who want to apply these anatomical and morphometric concepts in surgical practice as a determining factor for entering and exploring the brainstem is more complex.</p><p id="par0230" class="elsevierStylePara elsevierViewall">Taking into account the density and complexity of the fibres and nuclei housed in the brainstem, which are highly functional and distributed compactly in this part of the central nervous system with relatively little volume, which also reduces as we descend from the brainstem towards the bulbomedullary junction, leads us to consider the brainstem as a region that in fact lacks true “safe entry zones”. This circumstance may be further compromised and generate greater controversy in the presence of an interior lesion which invariably causes an anatomical distortion, especially in relation to the expansive effect on its surrounding fibres and nuclei. By way of example, the medullary striae present unique anatomical variations and may not even be recognised in up to 30% of cases. Likewise, the facial colliculus – the identification of which is fundamental for the supra- and infrafacial approaches – may not appear as a distinguishable superficial prominence in around a third of cases.<a class="elsevierStyleCrossRef" href="#bib0885"><span class="elsevierStyleSup">77</span></a> In light of this, various authors have proposed different references and measurements in a theoretical attempt to offset this limitation.<a class="elsevierStyleCrossRefs" href="#bib0835"><span class="elsevierStyleSup">67,75,78</span></a> Thus, the close relationship between most of the cranial nerve nuclei and the dorsal surface of the brainstem result in a greater risk of surgical morbidity with entry through the rhomboid fossa.</p><p id="par0235" class="elsevierStylePara elsevierViewall">As a result, the growing development of neurophysiological monitoring techniques and intraoperative mapping have constituted, in recent years, an almost mandatory tool in brainstem surgery, helping identify the cranial nerve nuclei and fibres in real time, as well as the main motor (corticospinal and corticobulbar) and sensory projection pathways, whilst also providing information regarding functional changes during surgical manipulation. They have thus become a crucial therapeutic resource when deciding upon the most suitable entry zone into the brainstem, particularly in exceptional cases where the deep location of the lesion is not accompanied by visible changes at the surface.<a class="elsevierStyleCrossRefs" href="#bib0930"><span class="elsevierStyleSup">86–90</span></a> It must be remembered that most focal brainstem lesions that are eligible for surgical resection display exophytic expression towards the surface or at least generally-visible subpial pathomorphological signs, such as colour changes in neural tissue. These must be considered the safest starting and entry points when approaching any lesion.<a class="elsevierStyleCrossRef" href="#bib0955"><span class="elsevierStyleSup">91</span></a> Where this is not the case, it is recommended that surgical planning mainly takes into account the shortest anatomical route to the lesion (in an attempt to traverse the smallest amount of normal neural tissue possible) alongside the route that poses the lowest risk of injury to critical nuclei or fibre bundles in its interior. To that effect, extensive and comprehensive anatomical knowledge should be utilised, alongside preoperative radiological analysis and intraoperative neurophysiological support.<a class="elsevierStyleCrossRefs" href="#bib0835"><span class="elsevierStyleSup">67,80,92,93</span></a></p></span></span></span><span id="sec0125" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0185">Surgical and radiological implications derived from fibre microdissection in the brainstem</span><p id="par0240" class="elsevierStylePara elsevierViewall">Through the microdissection of the most representative projection bundles in the brainstem, this research has shown the high anatomical complexity of the brainstem and its various connections to the brain, cerebellum and spinal cord. Among the most commonly reported brainstem lesions are tumours and cavernous haemangiomas.<a class="elsevierStyleCrossRefs" href="#bib0930"><span class="elsevierStyleSup">86,91,94,95</span></a> In patients presenting brainstem tumours, the oligosymptomatic clinical presentation of the early phases (for example, double vision as a sign of a cranial nerve disorder), with no signs or symptoms derived from large pathway involvement, could be explained by the fact that the fibre bundles are displaced, but not destroyed, by the growth of the mass.<a class="elsevierStyleCrossRef" href="#bib0980"><span class="elsevierStyleSup">96</span></a> This is especially true in cases of circumscribed lesions, thus representing the group in which the therapeutic approach is most critical, where the preservation of neurological function is paramount.</p><p id="par0245" class="elsevierStylePara elsevierViewall">The high morbidity inherent to brainstem surgery should be highlighted. Depending on the precise location of the lesion (brainstem, pons or medulla oblongata), and whether it is in a central, dorsolateral, lateral or ventral position, the main efferent and afferent projection tracts may appear markedly thinned and distorted, and severe neurological impairment may result after attempts at extensive tumour resections, primarily due to the involvement of the corticospinal tracts and the sensory complex, which includes the lemniscal pathway and spinothalamic tract. The high vulnerability and risk of cranial nerve dysfunction is equally worthy of mention. In midbrain lesions, the cranial nerve nuclei of the extrinsic eye muscles and white matter pathways that coordinate conjugate eye movement are high-risk structures during extensive tumour exeresis procedures. Likewise, in focal pontine tumours with a dorsal exophytic component, the abducens and facial nerve nuclei are the most susceptible to injury. Medulla oblongata tumours are the most dangerous, in light of their proximity to the lower cranial nerve nuclei and cardiorespiratory centres.<a class="elsevierStyleCrossRef" href="#bib0985"><span class="elsevierStyleSup">97</span></a> Thus, preoperative analysis of the close relationship between the lesion and the main individual white matter bundles surrounding it (both motor and sensory) is fundamental, especially in areas where these lie adjacent and close to the tumour due to limited parenchymal volume, as occurs in the medulla oblongata. In this sense, white matter tracts, grey matter nuclei and, on occasions, even tumours, can appear relatively homogeneous and be difficult to differentiate on conventional MRI scans, which remain the main diagnostic tool in clinical practice.</p><p id="par0250" class="elsevierStylePara elsevierViewall">Bearing this in mind, successfully delineating the individual state of the white matter tracts using tractography in the brainstem and studying their relationship to potential lesions therein is fundamental in preoperative and diagnostic assessments, and useful in postoperative controls. The <span class="elsevierStyleItalic">in vivo</span> qualitative and quantitative information obtained from viewing these tracts is of an unquestionable value. Despite the limitations detected in this work, mainly the difficulties distinguishing areas where fibres intersect, determining the cortical and subcortical origins and terminations of tracts, and the lack of anatomical accuracy when attempting to delimit contiguous tracts with a similar trajectory, the main trajectory of the corticospinal tract and medial lemniscus has been successfully reproduced through tractography, revealing the architectural relationships between these and surrounding structures. In this context, and with the objective of improving the management of patients with brainstem lesions, as surgeons we should be aware that surgical planning may involve the routine applicability of advanced and high-definition neuroimaging techniques, such as 7.0<span class="elsevierStyleHsp" style=""></span>Tesla MRI,<a class="elsevierStyleCrossRefs" href="#bib0990"><span class="elsevierStyleSup">98,99</span></a> diffusion spectrum imaging<a class="elsevierStyleCrossRef" href="#bib1000"><span class="elsevierStyleSup">100</span></a> or high-definition fibre tractography<a class="elsevierStyleCrossRef" href="#bib0630"><span class="elsevierStyleSup">26</span></a> in the future, which enable brainstem lesions and their relationships with the surrounding white and grey matter to be delimited with greater accuracy, with optimum recognition of small tracts of fibres, all of which is critical in pre- and post-surgical assessment. Thus, the detailed anatomical knowledge acquired through the fibre microdissection technique becomes a fundamental pillar for any surgeon involved in the treatment of neurosurgical diseases in this part of the central nervous system, providing a unique three-dimensional view of the white matter's intricate internal organisation. Finally, the cooperation between increasing development in neuroradiology, microsurgery and intraoperative neurophysiology should go hand in hand with research and study in neuroanatomy laboratories, which serves as the fourth key factor in the attainment of satisfactory results among patients undergoing surgery for brainstem lesions.</p><p id="par0255" class="elsevierStylePara elsevierViewall">By adopting the fibre microdissection technique, and focusing on the exposure of the corticospinal tract fibres and lemniscal pathway, we observed the fundamental macro and microscopic arrangement of the white matter bundles that traverse the lateral aspect of the cerebral hemisphere and brainstem, which are closely related to the grey matter nuclei and cranial nerves traversing them. It is understood that dissection of one system of fibres generally results in the destruction of another, and that clearly demarcating small fibre bundles as well as identifying their origin or termination may become an arduous task, despite the availability of microsurgical instruments and high magnification. However, it was possible to show them and follow their main path in the cerebral hemisphere and brainstem and to understand their course and main spatial relationships to one another and other parenchymatous structures, all of which is difficult to comprehend solely through the study of histological illustrations, which are common and widely reported in the literature.</p><p id="par0260" class="elsevierStylePara elsevierViewall">Finally, the authors emphasise the ultimately undeniable implication on the neurosurgical field of laboratory-acquired knowledge, since the purpose is to improve the interpretation and understanding of conventional and advanced brain MRI techniques (DTI-tractography), recognising both its benefits and limitations regarding precision and veracity (related, in part, to the intricate architecture of the white matter), and both together (anatomy and radiology) to promote the refinement of the surgical strategy. This includes the advance planning of a possible optimal anatomical-surgical corridor into the brainstem which, supported by intraoperative neurophysiological monitoring and the most meticulous microsurgical technique, avoids damage to critically functional adjacent healthy neural and vascular tissue. All of the above represents the highest principles in the pursuit of surgical excellence, based on maximum resection with minimum morbidity, when facing the enormous challenge posed by surgery on brainstem lesions.</p></span></span><span id="sec0130" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0190">Conclusions</span><p id="par0265" class="elsevierStylePara elsevierViewall">Using the fibre microdissection technique, we viewed the three-dimensional macro and microscopic organisation and arrangement of the white matter bundles that traverse the brainstem and connect it to the forebrain and cerebellum, particularly the corticospinal tracts and medial lemniscus, determining the relationships that these maintain with one another, with the neighbouring intrinsic neural structures and with the surface of the brainstem. This knowledge contributed a unique and in-depth perspective that promoted the proper reproduction and interpretation of DTT images in healthy subjects. The acquisition of extensive information on the surgical anatomy of the brainstem requires work by neuroanatomy laboratories as a key factor to understand the exact topography and anatomo-functional relationships, with the objective of subsequently transferring it to the clinical practice setting and providing the surgeon, when viewing and interpreting the various neuroimaging tests available, with critical and comprehensive analysis on the location and anatomical relationships of potential lesions that may be located close to this group of brainstem bundles, as well as to promote suitable management of a correct surgical indication, including the preoperative selection of optimal strategies and possible entry zones, ultimately achieving a safer and more precise microsurgical technique.</p></span><span id="sec0135" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0195">Conflicts of interest</span><p id="par0270" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:11 [ 0 => array:3 [ "identificador" => "xres1100255" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Material and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1041363" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1100254" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Material y métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1041364" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Material and methods" ] 6 => array:3 [ "identificador" => "sec0015" "titulo" => "Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0020" "titulo" => "Anatomy and dissection of the lateral surface of the cerebral hemisphere and corticospinal tract" ] 1 => array:2 [ "identificador" => "sec0025" "titulo" => "Anatomy and dissection of the anterolateral surface of the brainstem and superior surface of the cerebellar hemisphere" ] 2 => array:3 [ "identificador" => "sec0030" "titulo" => "DTT of the corticospinal tract and lemniscal pathway" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "Corticospinal tract" ] 1 => array:2 [ "identificador" => "sec0040" "titulo" => "Medial lemniscus and thalamocortical projections" ] ] ] ] ] 7 => array:3 [ "identificador" => "sec0045" "titulo" => "Discussion" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0050" "titulo" => "Historical-anatomical review of the study of the corticospinal tract and medial lemniscus based on the fibre dissection" ] 1 => array:3 [ "identificador" => "sec0055" "titulo" => "Anatomy of the surface of the brainstem and its relationship to the dissection of the corticospinal tract and medial lemniscus" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0060" "titulo" => "Midbrain" ] 1 => array:2 [ "identificador" => "sec0065" "titulo" => "Pons" ] 2 => array:2 [ "identificador" => "sec0070" "titulo" => "Medulla oblongata" ] ] ] 2 => array:3 [ "identificador" => "sec0075" "titulo" => "Entry zones to the brainstem and their relationship to the corticospinal tract and medial lemniscus" "secciones" => array:3 [ 0 => array:3 [ "identificador" => "sec0080" "titulo" => "Midbrain" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0085" "titulo" => "Lateral mesencephalic sulcus" ] 1 => array:2 [ "identificador" => "sec0090" "titulo" => "Perioculomotor zone" ] ] ] 1 => array:3 [ "identificador" => "sec0095" "titulo" => "Pons" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0100" "titulo" => "Peritrigeminal zone" ] 1 => array:2 [ "identificador" => "sec0105" "titulo" => "Suprafacial approach" ] ] ] 2 => array:3 [ "identificador" => "sec0110" "titulo" => "Medulla oblongata" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0115" "titulo" => "Anterolateral approaches" ] 1 => array:2 [ "identificador" => "sec0120" "titulo" => "Posterior approaches" ] ] ] ] ] 3 => array:2 [ "identificador" => "sec0125" "titulo" => "Surgical and radiological implications derived from fibre microdissection in the brainstem" ] ] ] 8 => array:2 [ "identificador" => "sec0130" "titulo" => "Conclusions" ] 9 => array:2 [ "identificador" => "sec0135" "titulo" => "Conflicts of interest" ] 10 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2017-12-20" "fechaAceptado" => "2018-06-03" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1041363" "palabras" => array:5 [ 0 => "Medial lemniscus" 1 => "Fibre microdissection technique" 2 => "Cortico-spinal tract" 3 => "Tractography" 4 => "Brainstem" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1041364" "palabras" => array:5 [ 0 => "Lemnisco medial" 1 => "Técnica de microdisección de fibras" 2 => "Tracto corticoespinal" 3 => "Tractografía" 4 => "Troncoencéfalo" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Objective</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">To demonstrate tridimensionally the anatomy of the cortico-spinal tract and the medial lemniscus, based on fibre microdissection and diffusion tensor tractography (DTT).</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Material and methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Ten brain hemispheres and brain-stem human specimens were dissected and studied under the operating microscope with microsurgical instruments by applying the fibre microdissection technique. Brain magnetic resonance imaging was obtained from 15 healthy subjects using diffusion-weighted images, in order to reproduce the cortico-spinal tract and the lemniscal pathway on DTT images.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">The main bundles of the cortico-spinal tract and medial lemniscus were demonstrated and delineated throughout most of their trajectories, noticing their gross anatomical relation to one another and with other white matter tracts and grey matter nuclei the surround them, specially in the brain-stem; together with their corresponding representation on DTT images.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Using the fibre microdissection technique we were able to distinguish the disposition, architecture and general topography of the cortico-spinal tract and medial lemniscus. This knowledge has provided a unique and profound anatomical perspective, supporting the correct representation and interpretation of DTT images. This information should be incorporated in the clinical scenario in order to assist surgeons in the detailed and critic analysis of lesions located inside the brain-stem, and therefore, improve the surgical indications and planning, including the preoperative selection of optimal surgical strategies and possible corridors to enter the brainstem, to achieve safer and more precise microsurgical technique.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Material and methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Objetivo</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Realizar un estudio anatómico de microdisección de fibras y radiológico mediante tractografía basada en tensor de difusión (DTT) para demostrar tridimensionalmente el tracto corticoespinal y el lemnisco medial.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Material y métodos</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Bajo visión microscópica y con el uso de instrumental microquirúrgico se disecaron y estudiaron 10 hemisferios cerebrales y 15 troncoencéfalos humanos a través de la técnica de microdisección de fibras. Se obtuvieron imágenes de resonancia magnética cerebrales de 15 sujetos sanos, empleando secuencias potenciadas en difusión para el trazado y reproducción mediante DTT del tracto corticoespinal y la vía del lemnisco.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Se demostraron y describieron anatómicamente el tracto corticoespinal y lemnisco medial en gran parte de sus trayectorias, identificando las relaciones entre sí y con otros haces de sustancia blanca y núcleos de sustancia gris cercanos, especialmente en el troncoencéfalo, con la correspondiente representación mediante DTT.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Mediante la técnica de microdisección se apreció la disposición, arquitectura y organización topográfica general del tracto corticoespinal y lemnisco medial. Este conocimiento ha aportado una perspectiva anatómica única y profunda que ha favorecido la representación y la correcta interpretación de las imágenes de DTT. Esta información debe ser trasladada a la práctica clínica para favorecer el análisis crítico y exhaustivo por parte del cirujano ante posibles lesiones localizadas en el interior del troncoencéfalo y, en consecuencia, mejorar la indicación y planificación quirúrgica, incluyendo la selección preoperatoria de estrategias óptimas y posibles zonas de abordajes a su interior, alcanzando una técnica microquirúrgica más segura y precisa.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Material y métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Rodríguez-Mena R, Piquer-Belloch J, Llácer-Ortega JL, Riesgo-Suárez P, Rovira-Lillo V. Anatomía microquirúrgica en 3 D del tracto corticoespinal y de la vía del lemnisco basada en microdisección de fibras y demostración a través de tractografía. Neurocirugía. 2018;29:275–295.</p>" ] ] "multimedia" => array:9 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2170 "Ancho" => 4200 "Tamanyo" => 1615095 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Progressive dissection of the lateral surface of the cerebral hemisphere and brainstem. Abbreviations in white letters refer to sulci and fissures. (A) Anatomy of the surface of the lateral aspect of the left cerebral hemisphere. The central sulcus separates the precentral gyrus (pcg), which contains the primary motor area, from the postcentral gyrus (pg), which contains the primary somatosensory area. (B) After dissecting the insular cortex and removing the extreme capsule and claustrum, the putamen (pu) is revealed, as well as part of the occipitofrontal fasciculi (off) and uncinate fibres (uf) in the depth of the limen insulae. (C) In another cerebral hemisphere, the internal capsule fibres and their different portions are observed: anterior limb (ic-a), genu (ic-g) and posterior limb (ic-p), with the latter having lenticulothalamic, retrolentiform and sublentiform portions. The internal capsule fibres continue and radiate extensively towards the corona radiata. (D) Dissection of the lateral aspect of the cerebral hemisphere reveals the continuation of the internal capsule (ic) caudally to form the cerebral peduncle (cp). The sulcus between the optic tract (ot) and cerebral peduncle marks the superior limit of the brainstem with the diencephalon. (E) Dissection of the anterolateral surface of the pons shows how the corticospinal tract (cst) divides into various longitudinal fibre bundles that then reconverge and form the pyramids (py) at the anterior surface of the medulla oblongata. (F) When the cortico-subcortical structures at the lateral aspect of the cerebral hemisphere anterior to the precentral sulcus are removed, the head and part of the body of the caudate nucleus (cn), medial to the internal capsule, are seen. (G) Dissection at the lateral aspect of the cerebral hemisphere continues to reveal the remainder of the caudate nucleus body at the periphery, medial to the internal capsule. (H) On another specimen, the anterior dissection of the medulla oblongata shows pyramidal decussation in the lower third. <span class="elsevierStyleSmallCaps">I</span>–K correspond to images B, E and G in 3D, respectively (anaglyph glasses in red and cyan must be used to view these properly).</p> <p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">ac: anterior commissure; ag: angular gyrus; cc: corpus callosum; cer: cerebellum; cn: caudate nucleus; cp: cerebral peduncle; cs: central sulcus; cst: corticospinal tract; F1: superior frontal gyrus; F2: middle frontal gyrus; F3: inferior frontal gyrus; off: occipitofrontal fasciculus; ic-a: anterior limb of the internal capsule; ic-g: genu of the internal capsule; ic-p: posterior limb of the internal capsule; ls: lateral sulcus; lv: lateral ventricle; mb: mammillary body; na: nucleus accumbens; ol: occipital lobe; op: pars opercularis; or: pars orbitalis; ot: optic tract; pcg: precentral gyrus; pd: pyramidal decussation; pg: postcentral gyrus; pon: pons; pu: putamen; py: medullary pyramid; slf: superior longitudinal fasciculus; smg: supramarginal gyrus; spl: superior parietal lobe; ss: sagittal stratum; T1: superior temporal gyrus; T2: middle temporal gyrus; T3: inferior temporal gyrus; tl: temporal lobe; tr: pars triangularis; uf: uncinate fasciculus.</p> <p id="spar0055" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSmallCaps">I</span>: olfactory nerve; <span class="elsevierStyleSmallCaps">II</span>: optic nerve; <span class="elsevierStyleSmallCaps">III</span>: oculomotor nerve; <span class="elsevierStyleSmallCaps">V</span>: trigeminal nerve; <span class="elsevierStyleSmallCaps">VII</span>-<span class="elsevierStyleSmallCaps">VIII</span>: facial and vestibulocochlear nerves; <span class="elsevierStyleSmallCaps">IX</span>: glossopharyngeal nerve; <span class="elsevierStyleSmallCaps">X</span>: vagus nerve; <span class="elsevierStyleSmallCaps">XI</span>: cranial root of the accessory nerve; <span class="elsevierStyleSmallCaps">XII</span>: hypoglossal nerve.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 3481 "Ancho" => 4200 "Tamanyo" => 1820715 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Dissection on the superior surface and lateral border of the cerebellar hemisphere and brainstem, as well as the cortico-subcortical structures of the contralateral cerebral hemisphere. Abbreviations in white letters refer to sulci and fissures. (A) Dissection on the superior surface and lateral border of the cerebellum exposes the superior cerebellar peduncles (scp), middle cerebellar peduncles (mcp) and inferior cerebellar peduncles (icp), as well as the dentate nucleus (dn). (B) From the anterior aspect, the continuation of the internal capsule fibres is observed, lateral to the caudate nucleus, towards the brainstem and its division into various fibre bundles in the pons. (C and D) At a higher magnification and after the extensive dissection of the cortico-subcortical structures of the contralateral cerebral hemisphere, the corticospinal, corticopontine and corticobulbar fibres of the midbrain are identified, as well as the corticospinal bundles at the pons level, which gather to form the medullary pyramid (py) on the left-hand side. (E) Superior and posterior view of the same specimen. Here we can observe the relationship maintained between the brainstem's lateral and posterior surface structures and the thalamus and some cerebellar hemisphere projection fibres. F–H correspond to images B–D in 3D, respectively.</p> <p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">ac: anterior commissure; cc: corpus callosum; cer: cerebellum; cfi: calcarine fissure; cn: caudate nucleus; cp: cerebral peduncle; cr: corona radiata; cst: corticospinal tract; cu: culmen of the cerebellum; dn: dentate nucleus; fl: frontal lobe; flo: flocculus; ic: inferior colliculus; ic-a: anterior limb of the internal capsule; ic-g: genu of the internal capsule; ic-p: posterior limb of the internal capsule; icp: inferior cerebellar peduncle; its: isthmus of cingulate gyrus; lgb: lateral geniculate body; lle: lateral lemniscus; mcp: middle cerebellar peduncle; na: nucleus accumbens: ol: olive of the medulla oblongata; pg: pineal gland; pos: parieto-occipital sulcus; py: medullary pyramid; qul: quadrangular lobule; scp: superior cerebellar peduncle; sl: simple lobule; ssl: superior semilunar lobule; sv: superior medullary velum; tl: temporal lobule; tp: thalamic pulvinar; ver: cerebellar vermis.</p> <p id="spar0070" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSmallCaps">II</span>: optic nerve; <span class="elsevierStyleSmallCaps">III</span>: oculomotor nerve; <span class="elsevierStyleSmallCaps">V</span>: trigeminal nerve; <span class="elsevierStyleSmallCaps">VII</span>-<span class="elsevierStyleSmallCaps">VIII</span>: facial and vestibulocochlear nerves; <span class="elsevierStyleSmallCaps">IX</span>-<span class="elsevierStyleSmallCaps">X</span>: glossopharyngeal and vagus nerves.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2189 "Ancho" => 4200 "Tamanyo" => 1419475 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">(A and B) Dissection of the cerebral peduncle and basilar part of the pons reveals the substantia nigra and sensory fibres that occupy the anterior surface of the pontine tegmentum and include the medial lemniscus, lateral spinothalamic tract and lateral lemniscus. (C) On continuing the dissection of the lateral and deep fibres of the medullary pyramid, the relationship between the organisation and arrangement of the corticospinal and lemniscal fibres is seen along their entire trajectory in the brainstem. (D and E) On a different specimen, after the dissection of all the fibres of the medullary pyramid, the basilar part of the pons and the cerebral peduncle, the main medial and lateral lemniscal fibres and spinothalamic tract are observed. (F and G) After dissecting the internal capsule, the lateral surface of the thalamus is exposed, with its main thalamocortical radiations. H and <span class="elsevierStyleSmallCaps">I</span> correspond to images C and E in 3D, respectively.</p> <p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">ac: anterior commissure; cc: corpus callosum; cn: caudate nucleus; cp: cerebral peduncle; cst: corticospinal tract; dn: dentate nucleus; dscp: decussation of the superior cerebellar peduncles; fl: frontal lobe; flo: flocculus; ic: inferior colliculus; icp: inferior cerebellar peduncle; lgb: lateral geniculate body; lle; lateral lemniscus; mb: mammillary body; mcp: middle cerebellar peduncle; mle: medial lemniscus; na: nucleus accumbens; ol: olive of the medulla oblongata; pon: pons; py: medullary pyramid; scp: superior cerebellar peduncle; sn: substantia nigra; t: thalamus; tl: temporal lobule; tp-a: anterior thalamic peduncle; tp-p: posterior thalamic peduncle; tp-s: superior thalamic peduncle; ver: cerebellar vermis.</p> <p id="spar0085" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSmallCaps">II</span>: optic nerve; <span class="elsevierStyleSmallCaps">III</span>: oculomotor nerve; <span class="elsevierStyleSmallCaps">V</span>: trigeminal nerve; <span class="elsevierStyleSmallCaps">VII</span>: facial nerve; <span class="elsevierStyleSmallCaps">IX</span>-<span class="elsevierStyleSmallCaps">X</span>: glossopharyngeal and vagus nerves.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 3046 "Ancho" => 3000 "Tamanyo" => 1473751 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0090" class="elsevierStyleSimplePara elsevierViewall">Axial slices of the cadaver head specimen at different levels: lateral ventricles (A), midbrain (B), pons with middle cerebellar peduncles (C) and upper portion of the medulla oblongata (D). (E and F) Axial slices of a brainstem specimen at the height of the superior colliculi and superior portion of the pons, respectively, with the medial lemniscus highlighted in red, the spinothalamic tract in blue and the lateral lemniscus in yellow. Abbreviations in white letters refer to sulci and fissures.</p> <p id="spar0095" class="elsevierStyleSimplePara elsevierViewall">ca: cerebral aqueduct; cc-s: corpus callosum splenium; cer: cerebellum; cn: caudate nucleus; cp: cerebral peduncle; cst: corticospinal tract; cu: culmen of the cerebellum; dn: dentate nucleus; fp: frontopontine fibres; ic-a: anterior limb of the internal capsule; ic-g: genu of the internal capsule; ic-p: posterior limb of the internal capsule; lms: lateral mesencephalic sulcus; lv-a: atrium of the lateral ventricle; lv-f: frontal horn of the lateral ventricle; mcp: middle cerebellar peduncle; ml: medial lemniscus; mo: medulla oblongata; ol: olive of the medulla oblongata; pu: putamen; py: medullary pyramid; rn: red nucleus; scp: superior cerebellar peduncle; scu: superior colliculus; sn: substantia nigra; t: thalamus; tl: temporal lobule; tp: transverse pontine fibres; tpop: temporoparietooccipital pontine fibres; ver: cerebellar vermis.</p>" ] ] 4 => array:7 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 2825 "Ancho" => 1400 "Tamanyo" => 331315 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0100" class="elsevierStyleSimplePara elsevierViewall">Reconstruction of the corticospinal tract through DTT images on different brain MRI planes.</p>" ] ] 5 => array:7 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 2561 "Ancho" => 3800 "Tamanyo" => 730984 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0105" class="elsevierStyleSimplePara elsevierViewall">Reconstruction of the medial lemniscus (A–D) and the continuation of the pathway as thalamocortical projections (E–G) through DTT images on different brain MRI planes.</p>" ] ] 6 => array:7 [ "identificador" => "fig0035" "etiqueta" => "Fig. 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 1345 "Ancho" => 3010 "Tamanyo" => 384015 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0110" class="elsevierStyleSimplePara elsevierViewall">Demonstration through DTT images of the corticospinal tract together with the medial lemniscus (A–C), as well as their thalamocortical projections (D and E), revealing the topographical relationships between them.</p>" ] ] 7 => array:7 [ "identificador" => "fig0040" "etiqueta" => "Fig. 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 1538 "Ancho" => 950 "Tamanyo" => 203081 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0115" class="elsevierStyleSimplePara elsevierViewall">(A) Illustration of the brainstem taken from Charles Bell's atlas <span class="elsevierStyleItalic">The Anatomy of the Brain</span> (1802), showing the corticospinal tract from the internal capsule to the pyramidal decussation. (B) Illustration from Herbert Mayo's atlas <span class="elsevierStyleItalic">A Series of Engravings Intended to Illustrate the Structure of the Brain and Spinal Cord in Man</span> (1827), specifically distinguishing between corticospinal fibres and the medial lemniscus in the brainstem. (C) Illustration from de Archille L. Foville's atlas <span class="elsevierStyleItalic">Traité complet de l’anatomie, de la physiologie et de la pathologie du système nerveux cérébro-spinal, première partie</span> (1844), featuring fantastic dissections of the lemniscal pathway in the brainstem. (D) The illustration from <span class="elsevierStyleItalic">Atlas Cerebri Humani</span> (1956), by Eugen Ludwig and Joseph Klingler, shows, through fibre dissection, the complex connections between the brain, brainstem and cerebellum, including the corticospinal pathway.</p>" ] ] 8 => array:7 [ "identificador" => "fig0045" "etiqueta" => "Fig. 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 2806 "Ancho" => 3000 "Tamanyo" => 976075 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0120" class="elsevierStyleSimplePara elsevierViewall">(A–D) Main brainstem entry zones. Abbreviations in white letters refer to sulci and fissures.</p> <p id="spar0125" class="elsevierStyleSimplePara elsevierViewall">bico: brachium of the inferior colliculus; cer: cerebellum; cp: cerebral peduncle; ct: cuneate tubercle; dn: dentate nucleus; dt: dentate tubercle; fc: facial colliculus; gt: gracile tubercle; hypt: hypoglossal trigone; ica: infracollicular area; ico: inferior colliculus; icp: inferior cerebellar peduncle; ifa: infrafacial area; lgb: lateral geniculate body; lle: lateral lemniscus; lms: lateral mesencephalic sulcus; lr: lateral recess; mcp: middle cerebellar peduncle; mgb: medial geniculate body; mo: medulla oblongata; ms: median sulcus; pg: pineal gland; pis: posterior intermediate sulcus; pls: posterolateral sulcus; pms: posterior medial sulcus; pon: pons; pta: peritrigeminal area; py: medullary pyramid; qul: quadrangular lobule; sca: supracollicular area; scp: superior cerebellar peduncle; sfa: suprafacial area; sv: superior medullary velum; tp: thalamic pulvinar; va: vestibular area; vat: vagal trigone; ver: vermis.</p> <p id="spar0130" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleSmallCaps">III</span>: oculomotor nerve; <span class="elsevierStyleSmallCaps">IX</span>: glossopharyngeal nerve; <span class="elsevierStyleSmallCaps">X</span>: vagus nerve; <span class="elsevierStyleSmallCaps">XI</span>: cranial root of the accessory nerve.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:100 [ 0 => array:3 [ "identificador" => "bib0505" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Core text of neuroanatomy" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "4th ed." "fecha" => "1991" "editorial" => "Williams & Wilkins" "editorialLocalizacion" => "Baltimore" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0510" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gray's anatomy: the anatomical basis of clinical practice" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "41st ed." "fecha" => "2015" "editorial" => "Elsevier" "editorialLocalizacion" => "London" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0515" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The human central nervous system" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "4th ed." "fecha" => "2008" "editorial" => "Springer" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0520" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neuroanatomia clínica" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "7<span class="elsevierStyleSup">a</span> ed." "fecha" => "2013" "editorial" => "Lippincott Williams & Wilkins" "editorialLocalizacion" => "Madrid" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0525" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tabulae anatomicae: icones cerebri et medullae spinalis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1838" "editorial" => "Impensis Orelii, Fuesslini et sociorum" "editorialLocalizacion" => "Turici" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0530" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The anatomy of the brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1802" "editorial" => "Longman and Co." "editorialLocalizacion" => "London" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0535" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anatomie des centres nerveux" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1895" "editorial" => "J. Rueff et Cie" "editorialLocalizacion" => "Paris" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0540" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Traité complet de l’anatomie de la physiologie et de la pathologie du systeme nerveux cerebrospinal" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1844" "editorial" => "Fortin, Masson et Cie" "editorialLocalizacion" => "Paris" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0545" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anatomie et physiologie du systeme nerveux en general et du cerveau en particulier" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1810–1819" "editorial" => "F. Schoell" "editorialLocalizacion" => "Paris" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0550" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Atlas Cerebri Humani: the inner structure of the brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1956" "editorial" => "Karger" "editorialLocalizacion" => "Basel" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0555" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A series of engravings intended to illustrate the structure of the brain and spinal cord in man" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1827" "editorial" => "Burgess Hill" "editorialLocalizacion" => "London" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0560" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fiber dissection technique: lateral aspect of the brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neurosurgery" "fecha" => "2000" "volumen" => "47" "paginaInicial" => "417" "paginaFinal" => "427" "link" => array:1 [ …1] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0565" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Is there a superior occipitofrontal fasciculus? A microsurgical anatomic study" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neurosurgery" "fecha" => "1997" "volumen" => "40" "paginaInicial" => "1226" "paginaFinal" => "1232" "link" => array:1 [ …1] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0570" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surgical anatomy of supratentorial midline lesions" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Neurosurg Focus" "fecha" => "2005" "volumen" => "18" "paginaInicial" => "E1" "link" => array:1 [ …1] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0575" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimation of the effective self-diffusion tensor from the NMR spin echo" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Magn Reson B" "fecha" => "1994" "volumen" => "103" "paginaInicial" => "247" "paginaFinal" => "254" "link" => array:1 [ …1] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0580" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diffusion tensor MR imaging of the human brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1148/radiology.201.3.8939209" "Revista" => array:6 [ "tituloSerie" => "Radiology" "fecha" => "1996" "volumen" => "201" "paginaInicial" => "637" "paginaFinal" => "648" "link" => array:1 [ …1] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0585" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Magnetic resonance imaging of cerebral associative white matter bundles employing fast-scan techniques" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Acta Anat (Basel)" "fecha" => "1997" "volumen" => "158" "paginaInicial" => "215" "paginaFinal" => "221" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0590" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Stroke" "fecha" => "1999" "volumen" => "30" "paginaInicial" => "393" "paginaFinal" => "397" "link" => array:1 [ …1] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0595" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ana.410420617" "Revista" => array:6 [ "tituloSerie" => "Ann Neurol" "fecha" => "1997" "volumen" => "42" "paginaInicial" => "951" "paginaFinal" => "962" "link" => array:1 [ …1] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0600" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "In vivo MR tractography using diffusion imaging" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Eur J Radiol" "fecha" => "2003" "volumen" => "45" "paginaInicial" => "223" "paginaFinal" => "234" "link" => array:1 [ …1] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0605" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Virtual in vivo interactive dissection of white matter fasciculi in the human brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neuroimage" "fecha" => "2002" "volumen" => "17" "paginaInicial" => "77" "paginaFinal" => "94" "link" => array:1 [ …1] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0610" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimization of white matter tractography for pre-surgical planning and image-guided surgery" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Oncol Rep" "fecha" => "2006" "volumen" => "15" "paginaInicial" => "1061" "paginaFinal" => "1064" "link" => array:1 [ …1] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0615" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Application of magnetic resonance tractography in the perioperative planning of patients with eloquent region intra-axial brain lesions" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jocn.2010.08.026" "Revista" => array:6 [ "tituloSerie" => "J Clin Neurosci" "fecha" => "2011" "volumen" => "18" "paginaInicial" => "633" "paginaFinal" => "639" "link" => array:1 [ …1] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0620" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2010.2.FOCUS09257" "Revista" => array:5 [ "tituloSerie" => "Neurosurg Focus" "fecha" => "2010" "volumen" => "28" "paginaInicial" => "E6" "link" => array:1 [ …1] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0625" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Utility of diffusion tensor-imaged (DTI) motor fiber tracking for the resection of intracranial tumors near the corticospinal tract" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Neurochir (Wien)" "fecha" => "2011" "volumen" => "153" "paginaInicial" => "68" "paginaFinal" => "74" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0630" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/NEU.0b013e3182592faa" "Revista" => array:6 [ "tituloSerie" => "Neurosurgery" "fecha" => "2012" "volumen" => "71" "paginaInicial" => "430" "paginaFinal" => "453" "link" => array:1 [ …1] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0635" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/01.neu.0000333767.05328.49" "Revista" => array:8 [ "tituloSerie" => "Neurosurgery" "fecha" => "2008" "volumen" => "62" "numero" => "Suppl. 3" "paginaInicial" => "989" "paginaFinal" => "1028" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0640" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: Role of tractography" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2010.2.FOCUS1025" "Revista" => array:5 [ "tituloSerie" => "Neurosurg Focus" "fecha" => "2010" "volumen" => "28" "paginaInicial" => "E5" "link" => array:1 [ …1] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0645" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Assessment of the corticospinal tract alterations before and after resection of brainstem lesions using Diffusion Tensor Imaging (DTI) and tractography at 3T" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ejrad.2009.08.012" "Revista" => array:6 [ "tituloSerie" => "Eur J Radiol" "fecha" => "2011" "volumen" => "77" "paginaInicial" => "383" "paginaFinal" => "391" "link" => array:1 [ …1] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0650" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: Preliminary data" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "AJNR Am J Neuroradiol" "fecha" => "2005" "volumen" => "26" "paginaInicial" => "791" "paginaFinal" => "796" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0655" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clinical significance of preoperative fibre-tracking to preserve the affected pyramidal tracts during resection of brain tumours in patients with preoperative motor weakness" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1136/jnnp.2006.099952" "Revista" => array:6 [ "tituloSerie" => "J Neurol Neurosurg Psychiatry" "fecha" => "2007" "volumen" => "78" "paginaInicial" => "716" "paginaFinal" => "721" "link" => array:1 [ …1] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0660" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Ann Neurol" "fecha" => "2002" "volumen" => "51" "paginaInicial" => "377" "paginaFinal" => "380" "link" => array:1 [ …1] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0665" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Combined magnetic resonance tractography and functional magnetic resonance imaging in evaluation of brain tumors involving the motor system" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Comput Assist Tomogr" "fecha" => "2004" "volumen" => "28" "paginaInicial" => "551" "paginaFinal" => "556" "link" => array:1 [ …1] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0670" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Characterization of displaced white matter by brain tumors using combined DTI and fMRI" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuroimage.2005.11.015" "Revista" => array:6 [ "tituloSerie" => "Neuroimage" "fecha" => "2006" "volumen" => "30" "paginaInicial" => "1100" "paginaFinal" => "1111" "link" => array:1 [ …1] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0675" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: Implications for preoperative risk assessments and postoperative outcomes" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/153303460400300606" "Revista" => array:6 [ "tituloSerie" => "Technol Cancer Res Treat" "fecha" => "2004" "volumen" => "3" "paginaInicial" => "567" "paginaFinal" => "576" "link" => array:1 [ …1] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0680" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/jns.2002.97.3.0568" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2002" "volumen" => "97" "paginaInicial" => "568" "paginaFinal" => "575" "link" => array:1 [ …1] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0685" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ejrad.2005.04.010" "Revista" => array:6 [ "tituloSerie" => "Eur J Radiol" "fecha" => "2005" "volumen" => "56" "paginaInicial" => "197" "paginaFinal" => "204" "link" => array:1 [ …1] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0690" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Schweiz Arch Neurol Psychiatr" "fecha" => "1935" "paginaInicial" => "247" "paginaFinal" => "256" ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0695" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Duvernoy's atlas of the human brain stem and cerebellum: high-field MRI, surface anatomy, internal structure, vascularization and 3D sectional anatomy" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2009" "editorial" => "Springer-Verlag" "editorialLocalizacion" => "Wien" ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0700" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Atlas of the human brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "4th ed." "fecha" => "2015" "editorial" => "Academic Press-Elsevier" "editorialLocalizacion" => "London" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0705" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The connections of the amygdala and of the anterior temporal cortex in the human brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Comp Neurol" "fecha" => "1960" "volumen" => "115" "paginaInicial" => "333" "paginaFinal" => "369" "link" => array:1 [ …1] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0710" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The anatomy of Meyer's loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2014.12.JNS14281" "Revista" => array:7 [ "tituloSerie" => "J Neurosurg" "fecha" => "2015" "volumen" => "122" "paginaInicial" => "1253" "paginaFinal" => "1262" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0715" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microsurgical anatomy of the optic radiation and related fibers in 3-dimensional images" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/NEU.0b013e3182556fde" "Revista" => array:6 [ "tituloSerie" => "Neurosurgery" "fecha" => "2012" "volumen" => "71" "paginaInicial" => "160" "paginaFinal" => "172" "link" => array:1 [ …1] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0720" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A description of some dissections of the internal capsule, the corona radiata and the thalamic radiation to the temporal lobe" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Arch NeurPsych" "fecha" => "1921" "volumen" => "5" "paginaInicial" => "361" "paginaFinal" => "369" ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0725" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anatomía de los pedúnculos cerebelosos en 3<span class="elsevierStyleHsp" style=""></span>D basada en microdisección de fibras y demostración a través de tractografía" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neucir.2016.10.001" "Revista" => array:6 [ "tituloSerie" => "Neurocirugía" "fecha" => "2017" "volumen" => "28" "paginaInicial" => "111" "paginaFinal" => "123" "link" => array:1 [ …1] ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0730" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Topographic classification of the thalamus surfaces related to microneurosurgery: a white matter fiber microdissection study" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wneu.2016.09.101" "Revista" => array:6 [ "tituloSerie" => "World Neurosurg" "fecha" => "2017" "volumen" => "97" "paginaInicial" => "438" "paginaFinal" => "452" "link" => array:1 [ …1] ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0735" "etiqueta" => "47" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fiber Pathways of the Brain" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2009" "editorial" => "Oxford University Press" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0740" "etiqueta" => "48" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cerebri Anatome: Cui Accessit Nervorum Descriptio et Usus" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1664" "editorial" => "Ja. Flesher for Jo. Martyn and Ja. Allestry" "editorialLocalizacion" => "London" ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0745" "etiqueta" => "49" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurographia Universalis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1685" "editorial" => "Lugduni: Apud Joannem Certe" "editorialLocalizacion" => "Lyons" ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0750" "etiqueta" => "50" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Elementa Physiologiae Corporis Humani. Vol. 4" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1766" "editorial" => "Sumptibus Societatis Typographicae" "editorialLocalizacion" => "Lausannae" ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0755" "etiqueta" => "51" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Die vörden Schenkel, das vördere Marksegel und die Schleife" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Reil's Arch f d Physiol" "fecha" => "1809" "paginaInicial" => "505" "paginaFinal" => "514" ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0760" "etiqueta" => "52" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ueber die schleifenschicht auf grund der resultate von nach der entwickelungsgeschichtlichen methode ausgefiihrten untersuchungen" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Arch f Anat u Phys, Anat Abth" "fecha" => "1895" "paginaInicial" => "379" "paginaFinal" => "395" ] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0765" "etiqueta" => "53" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Zur Kenntnis des Verlaufs der Hinterstreangfasern in der Medulla oblongata und im Kleinhirnschenkel" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Neurol Zentralblatt" "fecha" => "1885" "paginaInicial" => "73" "paginaFinal" => "76" ] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0770" "etiqueta" => "54" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The paramedian supracerebellar-transtentorial approach to the entire length of the mediobasal temporal region: an anatomical and clinical study. Laboratory investigation" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2011.12.JNS11791" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2012" "volumen" => "116" "paginaInicial" => "773" "paginaFinal" => "791" "link" => array:1 [ …1] ] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0775" "etiqueta" => "55" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Impact of temporal lobe surgery" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/jns.2004.101.5.0725" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2004" "volumen" => "101" "paginaInicial" => "725" "paginaFinal" => "738" "link" => array:1 [ …1] ] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0780" "etiqueta" => "56" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The cerebrum" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/01.NEU.0000255490.88321.CE" "Revista" => array:6 [ "tituloSerie" => "Neurosurgery" "fecha" => "2007" "volumen" => "61" "paginaInicial" => "37" "paginaFinal" => "119" "link" => array:1 [ …1] ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0785" "etiqueta" => "57" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Meyer's loop and the optic radiations in the transsylvian approach to the mediobasal temporal lobe" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Neurosurgery" "fecha" => "2006" "volumen" => "59" "numero" => "Suppl. 2" "paginaInicial" => "228" "paginaFinal" => "236" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib0790" "etiqueta" => "58" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/JNS/2008/108/4/0764" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2008" "volumen" => "108" "paginaInicial" => "764" "paginaFinal" => "774" "link" => array:1 [ …1] ] ] ] ] ] ] 58 => array:3 [ "identificador" => "bib0795" "etiqueta" => "59" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "An anteromedial approach to the temporal horn to avoid injury to the optic radiation fibers and uncinate fasciculus: Anatomical and technical note" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Neurosurg Focus" "fecha" => "2005" "volumen" => "18" "paginaInicial" => "E3" "link" => array:1 [ …1] ] ] ] ] ] ] 59 => array:3 [ "identificador" => "bib0800" "etiqueta" => "60" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anatomic relationship of the optic radiations to the atrium of the lateral ventricle: description of a novel entry point to the trigone" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/01.NEU.0000313121.58694.4A" "Revista" => array:7 [ "tituloSerie" => "Neurosurgery" "fecha" => "2008" "volumen" => "63" "numero" => "Suppl. 2" "paginaInicial" => "195" "paginaFinal" => "203" "link" => array:1 [ …1] ] ] ] ] ] ] 60 => array:3 [ "identificador" => "bib0805" "etiqueta" => "61" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anatomy and approaches along the cerebellar-brainstem fissures" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2015.2.JNS142707" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2016" "volumen" => "124" "paginaInicial" => "248" "paginaFinal" => "263" "link" => array:1 [ …1] ] ] ] ] ] ] 61 => array:3 [ "identificador" => "bib0810" "etiqueta" => "62" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microsurgical anatomy of the anterior commissure: correlations with diffusion tensor imaging fiber tracking and clinical relevance" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Neurosurgery" "fecha" => "2011" "volumen" => "69" "numero" => "Suppl. Operative" "paginaInicial" => "241" "paginaFinal" => "247" "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 62 => array:3 [ "identificador" => "bib0815" "etiqueta" => "63" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microsurgical anatomy of the ventral callosal radiations: new destination, correlations with diffusion tensor imaging fiber-tracking, and clinical relevance" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2009.6.JNS081712" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2010" "volumen" => "112" "paginaInicial" => "512" "paginaFinal" => "519" "link" => array:1 [ …1] ] ] ] ] ] ] 63 => array:3 [ "identificador" => "bib0820" "etiqueta" => "64" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microsurgical anatomy and internal architecture of the brainstem in 3D images: surgical considerations" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2015.4.JNS132778" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2016" "volumen" => "124" "paginaInicial" => "1377" "paginaFinal" => "1395" "link" => array:1 [ …1] ] ] ] ] ] ] 64 => array:3 [ "identificador" => "bib0825" "etiqueta" => "65" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microsurgical anatomy of the safe entry zones on the anterolateral brainstem related to surgical approaches to cavernous malformations" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/01.neu.0000317368.69523.40" "Revista" => array:7 [ "tituloSerie" => "Neurosurgery" "fecha" => "2008" "volumen" => "62" "numero" => "Suppl. 1" "paginaInicial" => "9" "paginaFinal" => "17" "link" => array:1 [ …1] ] ] ] ] ] ] 65 => array:3 [ "identificador" => "bib0830" "etiqueta" => "66" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/jns.2004.101.5.0739" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2004" "volumen" => "101" "paginaInicial" => "739" "paginaFinal" => "746" "link" => array:1 [ …1] ] ] ] ] ] ] 66 => array:3 [ "identificador" => "bib0835" "etiqueta" => "67" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Three-dimensional microsurgical anatomy and the safe entry zones of the brainstem" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/NEU.0000000000000466" "Revista" => array:7 [ "tituloSerie" => "Neurosurgery" "fecha" => "2014" "volumen" => "10" "numero" => "Suppl 4" "paginaInicial" => "602" "paginaFinal" => "620" "link" => array:1 [ …1] ] ] ] ] ] ] 67 => array:3 [ "identificador" => "bib0840" "etiqueta" => "68" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2016.1.JNS152082" "Revista" => array:7 [ "tituloSerie" => "J Neurosurg" "fecha" => "2017" "volumen" => "126" "paginaInicial" => "945" "paginaFinal" => "971" "link" => array:1 [ …1] "itemHostRev" => array:3 [ …3] ] ] ] ] ] ] 68 => array:3 [ "identificador" => "bib0845" "etiqueta" => "69" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The medial and lateral lemnisci: anatomically adjoined but functionally distinct fiber tracts" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.wneu.2016.11.095" "Revista" => array:6 [ "tituloSerie" => "World Neurosurg" "fecha" => "2017" "volumen" => "99" "paginaInicial" => "241" "paginaFinal" => "250" "link" => array:1 [ …1] ] ] ] ] ] ] 69 => array:3 [ "identificador" => "bib0850" "etiqueta" => "70" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microsurgical anatomy of the brain stem" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Op Tech Neurosurg" "fecha" => "2000" "volumen" => "3" "paginaInicial" => "80" "paginaFinal" => "86" ] ] ] ] ] ] 70 => array:3 [ "identificador" => "bib0855" "etiqueta" => "71" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurosurgery of infancy and childhood" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1969" "editorial" => "Thomas" "editorialLocalizacion" => "Springfield, Ill" ] ] ] ] ] ] 71 => array:3 [ "identificador" => "bib0860" "etiqueta" => "72" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A study of safe entry zones via the floor of the fourth ventricle for brain-stem lesions" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/jns.1993.78.6.0987" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "1993" "volumen" => "78" "paginaInicial" => "987" "paginaFinal" => "993" "link" => array:1 [ …1] ] ] ] ] ] ] 72 => array:3 [ "identificador" => "bib0865" "etiqueta" => "73" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surgery for gliomas and other mass lesions of the brainstem" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:6 [ "editores" => "L.Symon" "paginaInicial" => "261" "paginaFinal" => "341" "serieVolumen" => "22" "serieTitulo" => "Advances and technical standards in neurosurgery" "serieFecha" => "1995" ] ] ] ] ] ] 73 => array:3 [ "identificador" => "bib0870" "etiqueta" => "74" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surgical management of intrinsic brain stem gliomas" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Op Tech Neurosurg" "fecha" => "2000" "volumen" => "3" "paginaInicial" => "137" "paginaFinal" => "154" ] ] ] ] ] ] 74 => array:3 [ "identificador" => "bib0875" "etiqueta" => "75" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pericollicular surgical approaches to the rhomboid fossa, Part I. anatomical basis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/jns.1997.87.6.0893" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "1997" "volumen" => "87" "paginaInicial" => "893" "paginaFinal" => "899" "link" => array:1 [ …1] ] ] ] ] ] ] 75 => array:3 [ "identificador" => "bib0880" "etiqueta" => "76" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pericollicular approaches to the rhomboid fossa, Part II. Neurophysiological basis" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/jns.1999.91.5.0768" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "1999" "volumen" => "91" "paginaInicial" => "768" "paginaFinal" => "775" "link" => array:1 [ …1] ] ] ] ] ] ] 76 => array:3 [ "identificador" => "bib0885" "etiqueta" => "77" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The anatomical aspects of a surgical approach through the floor of the fourth ventricle" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Neurochir (Wien)" "fecha" => "1997" "volumen" => "139" "paginaInicial" => "1014" "paginaFinal" => "1019" ] ] ] ] ] ] 77 => array:3 [ "identificador" => "bib0890" "etiqueta" => "78" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anatomical landmarks of the rhomboid fossa (floor of the 4th ventricle), its length and its width" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Neurochir (Wien)" "fecha" => "1991" "volumen" => "113" "paginaInicial" => "84" "paginaFinal" => "90" ] ] ] ] ] ] 78 => array:3 [ "identificador" => "bib0895" "etiqueta" => "79" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surgical anatomy of the brain stem" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neurosurg Clin N Am" "fecha" => "1993" "volumen" => "4" "paginaInicial" => "367" "paginaFinal" => "403" "link" => array:1 [ …1] ] ] ] ] ] ] 79 => array:3 [ "identificador" => "bib0900" "etiqueta" => "80" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microsurgical anatomy of safe entry zones to the brainstem" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2015.4.JNS141945" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2016" "volumen" => "124" "paginaInicial" => "1359" "paginaFinal" => "1376" "link" => array:1 [ …1] ] ] ] ] ] ] 80 => array:3 [ "identificador" => "bib0905" "etiqueta" => "81" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cerebral cavernomas in the adult. Review of the literature and analysis of 72 surgically treated patients" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neurosurg Rev" "fecha" => "2002" "volumen" => "25" "paginaInicial" => "1" "paginaFinal" => "53" "link" => array:1 [ …1] ] ] ] ] ] ] 81 => array:3 [ "identificador" => "bib0910" "etiqueta" => "82" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The presigmoid approach to anterolateral pontine cavernomas" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2010.1.JNS08413" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "2010" "volumen" => "113" "paginaInicial" => "701" "paginaFinal" => "708" "link" => array:1 [ …1] ] ] ] ] ] ] 82 => array:3 [ "identificador" => "bib0915" "etiqueta" => "83" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Paramedian supracerebellar approach to the upper brain stem and peduncular lesions" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neurosurgery" "fecha" => "1997" "volumen" => "40" "paginaInicial" => "101" "paginaFinal" => "105" "link" => array:1 [ …1] ] ] ] ] ] ] 83 => array:3 [ "identificador" => "bib0920" "etiqueta" => "84" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cavernous angiomas of the brain stem" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Surg Neurol" "fecha" => "1999" "volumen" => "52" "paginaInicial" => "84" "paginaFinal" => "94" "link" => array:1 [ …1] ] ] ] ] ] ] 84 => array:3 [ "identificador" => "bib0925" "etiqueta" => "85" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cytoarchitectonic basis for safe entry into the brainstem" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Neurochir (Wien)" "fecha" => "2000" "volumen" => "142" "paginaInicial" => "383" "paginaFinal" => "387" ] ] ] ] ] ] 85 => array:3 [ "identificador" => "bib0930" "etiqueta" => "86" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Brainstem tumors" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:4 [ "titulo" => "Practical handbook of neurosurgery" "paginaInicial" => "349" "paginaFinal" => "369" "serieFecha" => "2009" ] ] ] ] ] ] 86 => array:3 [ "identificador" => "bib0935" "etiqueta" => "87" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Neurosurgery" "fecha" => "1995" "volumen" => "37" "paginaInicial" => "922" "paginaFinal" => "930" "link" => array:1 [ …1] ] ] ] ] ] ] 87 => array:3 [ "identificador" => "bib0940" "etiqueta" => "88" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The importance of brainstem mapping in brainstem surgical anatomy before the fourth ventricle and implication for intraoperative neurophysiological mapping" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Acta Neurochir (Wien)" "fecha" => "2006" "volumen" => "148" "paginaInicial" => "499" "paginaFinal" => "509" ] ] ] ] ] ] 88 => array:3 [ "identificador" => "bib0945" "etiqueta" => "89" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/jns.1993.79.3.0393" "Revista" => array:6 [ "tituloSerie" => "J Neurosurg" "fecha" => "1993" "volumen" => "79" "paginaInicial" => "393" "paginaFinal" => "399" "link" => array:1 [ …1] ] ] ] ] ] ] 89 => array:3 [ "identificador" => "bib0950" "etiqueta" => "90" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Brainstem cavernous malformations: anatomical, clinical, and surgical considerations" "autores" => array:1 [ 0 => array:2 [ …2] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3171/2010.7.FOCUS10164" "Revista" => array:5 [ "tituloSerie" => "Neurosurg Focus" "fecha" => "2010" "volumen" => "29" …2 ] ] ] ] ] ] 90 => array:3 [ "identificador" => "bib0955" "etiqueta" => "91" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Midline tumors (Corpus callosum, Septum pellucidum, Basal ganglia, Diencephalon, and Brainstem)" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:5 [ …5] ] ] ] ] ] 91 => array:3 [ "identificador" => "bib0960" "etiqueta" => "92" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "Available at: <a class="elsevierStyleInterRef" target="_blank" id="intr0010" href="https://www.barrowneuro.org/education/grand-rounds-publications-and-media/barrow-quarterly/volume-12-no-1-1996/two-point-method-evaluating-brain-stem-lesions/">https://www.barrowneuro.org/education/grand-rounds-publications-and-media/barrow-quarterly/volume-12-no-1-1996/two-point-method-evaluating-brain-stem-lesions/</a> [accessed 1 January 2016]" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The two-point method: Evaluating brain stem lesions" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ …3] ] ] ] ] ] 92 => array:3 [ "identificador" => "bib0965" "etiqueta" => "93" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "S3–S9" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Surgical treatment of brainstem cavernous malformations" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ …3] ] ] ] ] ] 93 => array:3 [ "identificador" => "bib0970" "etiqueta" => "94" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pediatric brain stem tumors: radiographic, pathological, and clinical correlations" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ …6] ] ] ] ] ] 94 => array:3 [ "identificador" => "bib0975" "etiqueta" => "95" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Advances in the treatment and outcome of brainstem cavernous malformation surgery: a single-center case series of 300 surgically treated patients" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1227/NEU.0b013e3181ff9cde" "Revista" => array:6 [ …6] ] ] ] ] ] 95 => array:3 [ "identificador" => "bib0980" "etiqueta" => "96" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microneurosurgery IVA" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ …4] ] ] ] ] ] 96 => array:3 [ "identificador" => "bib0985" "etiqueta" => "97" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Intrinsic tumors of the brainstem" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:4 [ …4] ] ] ] ] ] 97 => array:3 [ "identificador" => "bib0990" "etiqueta" => "98" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Three-dimensional susceptibility-weighted imaging at 7T using fractal-based quantitative analysis to grade gliomas" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00234-012-1081-1" "Revista" => array:6 [ …6] ] ] ] ] ] 98 => array:3 [ "identificador" => "bib0995" "etiqueta" => "99" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Advances in ultra-high field MRI for the clinical management of patients with brain tumors" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/WCO.0b013e32834cd495" "Revista" => array:6 [ …6] ] ] ] ] ] 99 => array:3 [ "identificador" => "bib1000" "etiqueta" => "100" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers" "autores" => array:1 [ …1] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.neuroimage.2008.03.036" "Revista" => array:6 [ …6] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/25298496/0000002900000006/v1_201810280620/S2529849618300352/v1_201810280620/en/main.assets" "Apartado" => array:4 [ "identificador" => "65581" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Clinical research" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/25298496/0000002900000006/v1_201810280620/S2529849618300352/v1_201810280620/en/main.pdf?idApp=UINPBA00004B&text.app=https://revistaneurocirugia.com/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2529849618300352?idApp=UINPBA00004B" ]
Journal Information
Share
Download PDF
More article options
Clinical Research
3D microsurgical anatomy of the cortico-spinal tract and lemniscal pathway based on fibre microdissection and demonstration with tractography
Anatomía microquirúrgica en 3 D del tracto corticoespinal y de la vía del lemnisco basada en microdisección de fibras y demostración a través de tractografía
Ruben Rodríguez-Mena
, José Piquer-Belloch, José Luis Llácer-Ortega, Pedro Riesgo-Suárez, Vicente Rovira-Lillo
Corresponding author
Cátedra de Neurociencias – Fundación NISA, CEU Hospital Universitario de la Ribera, Alzira, Valencia, Spain